
OMNISCIA

info@omniscia.io

Online report: etherfi-eth-2.0-staking

SMART CONTRACT

AUDIT REPORT

May 16, 2023

EtherFi ETH2.0
Staking

omniscia.ioomniscia.io

mailto:info@omniscia.io
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5

We were tasked with performing an audit of the EtherFi codebase and in particular their novel ETH2.0
staking mechanism that matches node operators and potential fund providers using a bidding system along
with a customized reward distribution model for each node that makes use of NFTs.

Over the course of the audit, we identified multiple errors of significant severity the most crucial of which
arise from the Beacon chain deposit mechanism and its susceptibility to a front-run attack with different
withdrawal credentials.

We advise the EtherFi team to closely evaluate all minor-and-above findings identified in the report and
promptly remediate them as well as consider all optimizational exhibits identified in the report.

The EtherFi team iterated through all findings within the report and provided us with a revised commit hash
to evaluate all exhibits on.

We evaluated all alleviations performed by EtherFi and have identified that certain exhibits have not been
adequately dealt with. We advise the EtherFi team to revisit the following exhibits: SME-04M, EFM-05M, EFN-
05M

Additionally, we advise these informational / static analysis exhibits to be re-visited as they have been
remediated either partially or improperly: EFM-01S, TYR-01C, SMR-01C, SMR-04C, SMR-02C, EFN-01C, EFN-
11C, EFN-04C, EFN-10C, EFN-03C, EFN-09C, PRM-02C, PRM-04C, CRP-02C, AMR-01C, AMR-03C, AMR-02C,
EFM-02C, EFM-05C, SME-02C

ETH 2.0 Staking Security Audit

Audit Overview

Post-Audit Conclusion

Contracts Assessed

Files in Scope Repository Commit(s)

AuctionManager.sol (AMR) dappContracts 0f9df283aa,
3a52fa3a5d

BNFT.sol (BNF) dappContracts 0f9df283aa,
3a52fa3a5d

ClaimReceiverPool.sol (CRP) dappContracts 0f9df283aa,
3a52fa3a5d

EtherFiNode.sol (EFN) dappContracts 0f9df283aa,
3a52fa3a5d

EarlyAdopterPool.sol (EAP) dappContracts 0f9df283aa,
3a52fa3a5d

EtherFiNodesManager.sol (EFM) dappContracts 0f9df283aa,
3a52fa3a5d

NodeOperatorManager.sol (NOM) dappContracts 0f9df283aa,
3a52fa3a5d

ProtocolRevenueManager.sol (PRM) dappContracts 0f9df283aa,
3a52fa3a5d

ScoreManager.sol (SMR) dappContracts 0f9df283aa,
3a52fa3a5d

StakingManager.sol (SME) dappContracts 0f9df283aa,
3a52fa3a5d

TNFT.sol (TNF) dappContracts 0f9df283aa,
3a52fa3a5d

Treasury.sol (TYR) dappContracts 0f9df283aa,
3a52fa3a5d

UUPSProxy.sol (UUP) dappContracts 0f9df283aa,
3a52fa3a5d

Severity Identified Alleviated Partially Alleviated Acknowledged

6 6 0 0

73 53 7 13

22 22 0 0

2 2 0 0

11 8 0 3

During the audit, we filtered and validated a total of 27 findings utilizing static analysis tools as well as
identified a total of 87 findings during the manual review of the codebase. We strongly recommend that
any minor severity or higher findings are dealt with promptly prior to the project's launch as they can
introduce potential misbehaviours of the system as well as exploits.

Audit Synopsis

Compilation

The project utilizes hardhat as its development pipeline tool, containing an array of tests and scripts coded
in TypeScript.

To compile the project, the compile command needs to be issued via the npx CLI tool to hardhat :

The hardhat tool automatically selects Solidity version 0.8.13 based on the version specified within the
hardhat.config.ts file.

The project contains discrepancies with regards to the Solidity version used as the pragma statements of the
contracts are open-ended (^0.8.13).

We advise them to be locked to 0.8.13 (=0.8.13), the same version utilized for our static analysis as well
as optimizational review of the codebase.

During compilation with the hardhat pipeline, no errors were identified that relate to the syntax or
bytecode size of the contracts.

npx hardhat compile

BASH

Static Analysis

The execution of our static analysis toolkit identified 386 potential issues within the codebase of which 325
were ruled out to be false positives or negligible findings.

The remaining 61 issues were validated and grouped and formalized into the 27 exhibits that follow:

ID Severity Addressed Title

AMR-01S Inexistent Event Emissions

AMR-02S Inexistent Visibility Specifier

AMR-03S Literal Equality of bool Variables

AMR-04S Inexistent Sanitization of Input Addresses

BNF-01S Inexistent Visibility Specifier

BNF-02S Inexistent Sanitization of Input Address

CRP-01S Illegible Numeric Value Representation

CRP-02S Inexistent Visibility Specifiers

CRP-03S Inexistent Sanitization of Input Addresses

EAP-01S Illegible Numeric Value Representations

EAP-02S Inexistent Sanitization of Input Addresses

EAP-03S Potential Lock of Native Assets

EAP-04S
Improper Invocations of EIP-20 transfer /
transferFrom

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-04S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/BNFT-BNF#BNF-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/BNFT-BNF#BNF-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ClaimReceiverPool-CRP#CRP-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ClaimReceiverPool-CRP#CRP-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ClaimReceiverPool-CRP#CRP-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-04S

ID Severity Addressed Title

EFN-01S Illegible Numeric Value Representation

EFN-02S Inexistent Sanitization of Input Address

EFM-01S Illegible Numeric Value Representations

EFM-02S Inexistent Visibility Specifier

EFM-03S Inexistent Sanitization of Input Addresses

NOM-01S Literal Equality of bool Variable

NOM-02S Inexistent Sanitization of Input Address

PRM-01S Inexistent Visibility Specifier

PRM-02S Inexistent Sanitization of Input Addresses

SMR-01S Inexistent Visibility Specifier

SME-01S Inexistent Visibility Specifier

SME-02S Inexistent Sanitization of Input Addresses

TNF-01S Inexistent Visibility Specifier

TNF-02S Inexistent Sanitization of Input Address

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNode-EFN#EFN-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNode-EFN#EFN-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNodesManager-EFM#EFM-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNodesManager-EFM#EFM-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNodesManager-EFM#EFM-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/NodeOperatorManager-NOM#NOM-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/NodeOperatorManager-NOM#NOM-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ProtocolRevenueManager-PRM#PRM-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ProtocolRevenueManager-PRM#PRM-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ScoreManager-SMR#SMR-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/StakingManager-SME#SME-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/StakingManager-SME#SME-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/TNFT-TNF#TNF-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/TNFT-TNF#TNF-02S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and
vulnerabilities in EtherFi's ETH2.0 staking system.

As the project at hand implements a novel ETH2.0 node operation system, intricate care was put into
ensuring that the flow of funds within the system conforms to the specifications and restrictions laid
forth within the protocol's specification.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary
formulas within the system execute as expected. We pinpointed multiple high-severity vulnerabilities
within the system which could have had severe ramifications to its overall operation the most crucial of
which revolved around the notion of withdrawal credentials and how they can be manipulated to point to a
different address than the one EtherFi expects.

Additionally, the system was investigated for any other commonly present attack vectors such as re-entrancy
attacks, mathematical truncations, logical flaws and ERC / EIP standard inconsistencies. The documentation
of the project was satisfactory to a certain extent, however, we strongly recommend it to be expanded at
certain complex points such as the multi-branch fund distribution mechanism in
EtherFiNode::getFullWithdrawalPayouts using arbitrary value literals.

A total of 87 findings were identified over the course of the manual review of which 40 findings concerned
the behaviour and security of the system. The non-security related findings, such as optimizations, are
included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

AMR-01M Inexplicable Capability of Re-Invocation

AMR-02M Inexistent Disable of Initializer

AMR-03M Insufficient Validation of Bid Size

AMR-04M Improper Entry Clean-Up

AMR-05M Insufficient Validation of Minimum Bid Amount

https://eips.ethereum.org/
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-05M

ID Severity Addressed Title

BNF-01M Inexistent Disable of Initializer

BNF-02M Incorrect Override of Functionality

CRP-01M Inexistent Disable of Initializer

CRP-02M Inexistent Slippage Protection

CRP-03M Inexplicable Deposit Flow

CRP-04M Unsupported Withdrawal Mechanism

EAP-01M Improper Accuracy of Point Calculations

EAP-02M Pure Off-Chain Point Utilization

EAP-03M Inexistent Prevention of Re-Invocation

EAP-04M Potentially Redundant Amount Restriction

EAP-05M Unfair Reset of Deposit Time

EFN-01M Inexistent Disable of Initializer

EFN-02M Incorrect Balance Assumption

EFN-03M Inexistent Sanitization of Exit Timestamp

EFN-04M Inexistent Caller Validation

EFN-05M Weak Validation of Node State

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/BNFT-BNF#BNF-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/BNFT-BNF#BNF-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-05M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-05M

ID Severity Addressed Title

EFM-01M Inexistent Disable of Initializer

EFM-02M Inexistent Prevention of Duplicate Exit

EFM-03M Inexistent Sanitization of Non-Exit Penalty Rate

EFM-04M Inexistent Validation of Node State

EFM-05M Weak Validation of Node State

NOM-01M Inexplicable Capability of Re-Invocation

NOM-02M Incorrect Verification of Whitelist

PRM-01M Inexplicable Capability of Re-Invocation

PRM-02M Inexistent Disable of Initializer

PRM-03M Inexistent Sanitization of Fee Proportion

SMR-01M Inexistent Disable of Initializer

SMR-02M Inexplicable Data Types

SMR-03M Inexistent Sanitization of Valid Type

SMR-04M Improper Score Maintenance Mechanisms

SME-01M Inexplicable Capability of Re-Invocation

SME-02M Inexistent Disable of Initializer

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-05M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/NodeOperatorManager-NOM#NOM-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/NodeOperatorManager-NOM#NOM-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ProtocolRevenueManager-PRM#PRM-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ProtocolRevenueManager-PRM#PRM-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ProtocolRevenueManager-PRM#PRM-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-02M

ID Severity Addressed Title

SME-03M Incorrect Data Entry

SME-04M ETH2.0 Validator Front-Run Withdrawal
Credential Attack

TNF-01M Inexistent Disable of Initializer

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/TNFT-TNF#TNF-01M

Code Style

During the manual portion of the audit, we identified 47 optimizations that can be applied to the codebase
that will decrease the operational cost associated with the execution of a particular function and generally
ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should
make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

AMR-01C Inefficient Optimization of Iterator Increment

AMR-02C Inefficient mapping Lookups

AMR-03C Loop Iterator Optimization

AMR-04C Non-Standard Gap Size

AMR-05C Redundant Duplicate Application of Access
Control

BNF-01C Non-Standard Gap Size

CRP-01C Duplicate Invocation of Getter

CRP-02C Inexistent Gap Declaration

EAP-01C Code Readability Enhancement

EAP-02C Generic Typographic Mistakes

EAP-03C Inefficient Contract TVL Calculation

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/BNFT-BNF#BNF-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ClaimReceiverPool-CRP#CRP-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ClaimReceiverPool-CRP#CRP-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-03C

ID Severity Addressed Title

EAP-04C Inefficient mapping Lookups

EAP-05C Insufficient Documentation of Literal

EAP-06C Redundant Data Point

EAP-07C Redundant Duplicate Data Points

EAP-08C Redundant Parenthesis Statements

EAP-09C Variable Mutability Specifiers (Immutable)

EFN-01C Generic Typographic Mistakes

EFN-02C Ineffectual Conditional Check

EFN-03C Ineffectual Usage of Safe Arithmetics

EFN-04C Inefficient Calculation of Rewards

EFN-05C Inefficient Case Handling

EFN-06C Inefficient Loop Iterator Data Type

EFN-07C Loop Iterator Optimizations

EFN-08C Optimization of Penalty Calculation

EFN-09C Potentially Incorrect Constants

EFN-10C Redundant Parenthesis Statements

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-06C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-07C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-08C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-09C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-06C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-07C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-08C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-09C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-10C

ID Severity Addressed Title

EFN-11C Repetitive Value Literals

EFM-01C Inexistent Error Messages

EFM-02C Loop Iterator Optimizations

EFM-03C Non-Standard Gap Size

EFM-04C Redundant Parenthesis Statements

EFM-05C Repetitive Value Literal

NOM-01C Inefficient mapping Lookups

PRM-01C Non-Standard Gap Size

PRM-02C Optimization of Code Block

PRM-03C Repetitive Invocation of Getter Function

PRM-04C Repetitive Value Literal

SMR-01C Generic Typographic Mistake

SMR-02C Ineffectual Usage of Safe Arithmetics

SMR-03C Non-Standard Gap Size

SMR-04C Redundant Storage Reads

SME-01C Inexistent Error Message

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-11C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/NodeOperatorManager-NOM#NOM-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/StakingManager-SME#SME-01C

ID Severity Addressed Title

SME-02C Loop Iterator Optimizations

SME-03C Non-Standard Gap Size

TNF-01C Non-Standard Gap Size

TYR-01C Redundant Evaluation of Balance

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/StakingManager-SME#SME-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/StakingManager-SME#SME-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/TNFT-TNF#TNF-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/Treasury-TYR#TYR-01C

AuctionManager Static Analysis Findings

Type Severity Location

Language Specific AuctionManager.sol:L221-L223, L227-L229

The linked functions adjust sensitive contract variables yet do not emit an event for it.

src/AuctionManager.sol

AMR-01S: Inexistent Event Emissions

Description:

Example:

function disableWhitelist() public onlyOwner {

 whitelistEnabled = false;

}

SOL

221

222

223

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

We advise an event to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.

Two events have been introduced to the codebase each signalling the whitelist's enabled and disabled state
respectively, alleviating this exhibit.

Recommendation:

Alleviation:

Type Severity Location

Code Style AuctionManager.sol:L39

The linked variable has no visibility specifier explicitly set.

src/AuctionManager.sol

AMR-02S: Inexistent Visibility Specifier

Description:

Example:

uint256[32] __gap;

SOL

39

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

A public visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context
we advise the variable to be set as internal instead of public as a matter of optimization.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization AuctionManager.sol:L89, L100, L168, L202

The linked bool comparisons are performed between variables and bool literals.

src/AuctionManager.sol

AMR-03S: Literal Equality of bool Variables

Description:

Example:

nodeOperatorManagerInterface.isWhitelisted(msg.sender) == true,

SOL

89

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise each bool variable to be utilized directly either in its negated (!) or original form.

All referenced equality comparisons of bool variables have been optimized to utilize each bool variable's
value directly as advised.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization AuctionManager.sol:L60-L77, L285-L291, L295-L299

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/AuctionManager.sol

AMR-04S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function initialize(

 address _nodeOperatorManagerContract

) external initializer {

 whitelistBidAmount = 0.001 ether;

 minBidAmount = 0.01 ether;

 maxBidAmount = 5 ether;

 numberOfBids = 1;

 whitelistEnabled = true;

 nodeOperatorManagerInterface = INodeOperatorManager(

 _nodeOperatorManagerContract

);

 __Pausable_init();

 __Ownable_init();

 __UUPSUpgradeable_init();

 __ReentrancyGuard_init();

}

SOL

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

All referenced instances of address arguments are properly sanitized via require checks ensuring they are
non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

BNFT Static Analysis Findings

Type Severity Location

Code Style BNFT.sol:L14

The linked variable has no visibility specifier explicitly set.

src/BNFT.sol

BNF-01S: Inexistent Visibility Specifier

Description:

Example:

uint256[32] __gap;

SOL

14

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

A public visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context
we advise the variable to be set as internal instead of public as a matter of optimization.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization BNFT.sol:L20-L26

The linked function accepts an address argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/BNFT.sol

BNF-02S: Inexistent Sanitization of Input Address

Description:

Impact:

Example:

function initialize(address _stakingManagerAddress) initializer external {

 __ERC721_init("Bond NFT", "BNFT");

 __Ownable_init();

 __UUPSUpgradeable_init();

 stakingManagerAddress = _stakingManagerAddress;

}

SOL

20

21

22

23

24

25

26

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that the address specified is non-zero.

The referenced instance of an address argument is properly sanitized via a require check ensuring that it
is non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

ClaimReceiverPool Static Analysis Findings

Type Severity Location

Code Style ClaimReceiverPool.sol:L31

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the
codebase.

src/ClaimReceiverPool.sol

CRP-01S: Illegible Numeric Value Representation

Description:

Example:

uint24 public constant poolFee = 3000;

SOL

31

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

To properly illustrate the value's purpose, we advise the following guidelines to be followed.
For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported.
For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

The underscore separator has been properly introduced to the referenced value, optimizing its legibility.

Recommendation:

Alleviation:

Type Severity Location

Code Style ClaimReceiverPool.sol:L49-L50, L53-L54

The linked variables have no visibility specifier explicitly set.

src/ClaimReceiverPool.sol

CRP-02S: Inexistent Visibility Specifiers

Description:

Example:

ISwapRouter constant router =

 ISwapRouter(0xE592427A0AEce92De3Edee1F18E0157C05861564);

SOL

49

50

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise them to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

All referenced variables have had a public visibility specifier set, alleviating this exhibit in full.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization ClaimReceiverPool.sol:L72-L90

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/ClaimReceiverPool.sol

CRP-03S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function initialize(

 address _rEth,

 address _wstEth,

 address _sfrxEth,

 address _cbEth,

 address _scoreManager

) external initializer {

 rETH = _rEth;

 wstETH = _wstEth;

 sfrxETH = _sfrxEth;

 cbETH = _cbEth;

 scoreManager = IScoreManager(_scoreManager);

 __Pausable_init();

 __Ownable_init();

 __UUPSUpgradeable_init();

 __ReentrancyGuard_init();

}

SOL

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

All referenced instances of address arguments are properly sanitized via require checks ensuring they are
non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

EarlyAdopterPool Static Analysis Findings

Type Severity Location

Code Style EarlyAdopterPool.sol:L183, L215-L216

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the
codebase.

src/EarlyAdopterPool.sol

EAP-01S: Illegible Numeric Value Representations

Description:

Example:

claimDeadline = block.timestamp + (_claimDeadline * 86400);

SOL

183

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

To properly illustrate each value's purpose, we advise the following guidelines to be followed.
For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported.
For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization EarlyAdopterPool.sol:L85-L100

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/EarlyAdopterPool.sol

EAP-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

constructor(

 address _rETH,

 address _wstETH,

 address _sfrxETH,

 address _cbETH

) {

 rETH = _rETH;

 wstETH = _wstETH;

 sfrxETH = _sfrxETH;

 cbETH = _cbETH;

 rETHInstance = IERC20(_rETH);

 wstETHInstance = IERC20(_wstETH);

 sfrxETHInstance = IERC20(_sfrxETH);

 cbETHInstance = IERC20(_cbETH);

}

SOL

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Language Specific EarlyAdopterPool.sol:L74

The linked receive / fallback function performs no sanitization as to its caller and no function within the
contract expects funds to have been received directly by the contract.

Any native funds accidentally sent to the contract may be forever locked.

src/EarlyAdopterPool.sol

EAP-03S: Potential Lock of Native Assets

Description:

Impact:

Example:

receive() external payable {}

SOL

74

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

We advise the code to properly prohibit accidental native assets from being permanently locked in the
contract by introducing a require check restricting the msg.sender to the contract(s) expected to transfer
assets to the system (i.e. in case of a wrapped native version of an asset, only the WXXX contract address
should be allowed). Alternatively, if the contract is not expected to receive native assets directly the function
should be removed in its entirety.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity EarlyAdopterPool.sol:L127, L268-L271

The linked statements do not properly validate the returned bool values of the EIP-20 standard transfer
& transferFrom functions. As the standard dictates, callers must not assume that false is never
returned.

If the code mandates that the returned bool is true , this will cause incompatibility with tokens such as
USDT / Tether as no such bool is returned to be evaluated causing the check to fail at all times. On the other
hand, if the token utilized can return a false value under certain conditions but the code does not validate
it, the contract itself can be compromised as having received / sent funds that it never did.

src/EarlyAdopterPool.sol

EAP-04S: Improper Invocations of EIP-20 transfer / transferFrom

Description:

Impact:

Example:

require(IERC20(_erc20Contract).transferFrom(msg.sender, address(this), _amount), "Tran

SOL

127

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20#token

Since not all standardized tokens are EIP-20 compliant (such as Tether / USDT), we advise a safe wrapper
library to be utilized instead such as SafeERC20 by OpenZeppelin to opportunistically validate the returned
bool only if it exists in each instance.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

https://eips.ethereum.org/EIPS/eip-20

EtherFiNode Static Analysis Findings

Type Severity Location

Code Style EtherFiNode.sol:L436

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the
codebase.

src/EtherFiNode.sol

EFN-01S: Illegible Numeric Value Representation

Description:

Example:

return uint256(timeElapsed / (24 * 3600));

SOL

436

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

To properly illustrate the value's purpose, we advise the following guidelines to be followed.
For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported.
For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

The underscore separator has been properly introduced to the referenced value, optimizing its legibility.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization EtherFiNode.sol:L25-L29

The linked function accepts an address argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/EtherFiNode.sol

EFN-02S: Inexistent Sanitization of Input Address

Description:

Impact:

Example:

function initialize(address _etherFiNodesManager) public {

 require(stakingStartTimestamp == 0, "already initialised");

 stakingStartTimestamp = uint32(block.timestamp);

 etherFiNodesManager = _etherFiNodesManager;

}

SOL

25

26

27

28

29

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that the address specified is non-zero.

The referenced instance of an address argument is properly sanitized via a require check ensuring that it
is non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

EtherFiNodesManager Static Analysis Findings

Type Severity Location

Code Style EtherFiNodesManager.sol:L77, L93-L96, L107-L110

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the
codebase.

src/EtherFiNodesManager.sol

EFM-01S: Illegible Numeric Value Representations

Description:

Example:

SCALE = 1000000;

SOL

77

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

To properly illustrate each value's purpose, we advise the following guidelines to be followed.
For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported.
For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

While the underscore character has been introduced to all referenced variables, it has been done so using
conventional numbers rather than percentage-based values. We advise literals such as 815625 , meant to
represent 81.5625% , to be written as 81_5625 better illustrating their purpose.

Recommendation:

Alleviation:

Type Severity Location

Code Style EtherFiNodesManager.sol:L45

The linked variable has no visibility specifier explicitly set.

src/EtherFiNodesManager.sol

EFM-02S: Inexistent Visibility Specifier

Description:

Example:

uint256[32] __gap;

SOL

45

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

A public visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context
we advise the variable to be set as internal instead of public as a matter of optimization.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization EtherFiNodesManager.sol:L63-L119

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/EtherFiNodesManager.sol

EFM-03S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function initialize(

 address _treasuryContract,

 address _auctionContract,

 address _stakingManagerContract,

 address _tnftContract,

 address _bnftContract,

 address _protocolRevenueManagerContract

) external initializer {

SOL

63

64

65

66

67

68

69

70

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

All referenced instances of address arguments are properly sanitized via require checks ensuring they are
non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

NodeOperatorManager Static Analysis Findings

Type Severity Location

Gas Optimization NodeOperatorManager.sol:L42

The linked bool comparison is performed between a variable and a bool literal.

src/NodeOperatorManager.sol

NOM-01S: Literal Equality of bool Variable

Description:

Example:

require(registered[msg.sender] == false, "Already registered");

SOL

42

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the bool variable to be utilized directly either in its negated (!) or original form.

The referenced equality comparison of a bool variable has been optimized to utilize the bool variable's
value directly as advised.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization NodeOperatorManager.sol:L127-L131

The linked function accepts an address argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/NodeOperatorManager.sol

NOM-02S: Inexistent Sanitization of Input Address

Description:

Impact:

Example:

function setAuctionContractAddress(

 address _auctionContractAddress

) public onlyOwner {

 auctionManagerContractAddress = _auctionContractAddress;

}

SOL

127

128

129

130

131

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that the address specified is non-zero.

The referenced instance of an address argument is properly sanitized via a require check ensuring that it
is non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

ProtocolRevenueManager Static Analysis Findings

Type Severity Location

Code Style ProtocolRevenueManager.sol:L33

The linked variable has no visibility specifier explicitly set.

src/ProtocolRevenueManager.sol

PRM-01S: Inexistent Visibility Specifier

Description:

Example:

uint256[32] __gap;

SOL

33

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

A public visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context
we advise the variable to be set as internal instead of public as a matter of optimization.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization ProtocolRevenueManager.sol:L121-L125, L130-L134

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/ProtocolRevenueManager.sol

PRM-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

/// @notice Instantiates the interface of the node manager for integration

/// @dev Set manually due to cirular dependencies

/// @param _etherFiNodesManager etherfi node manager address to set

function setEtherFiNodesManagerAddress(

 address _etherFiNodesManager

) external onlyOwner {

 etherFiNodesManager = IEtherFiNodesManager(_etherFiNodesManager);

}

SOL

118

119

120

121

122

123

124

125

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

All referenced instances of address arguments are properly sanitized via require checks ensuring they are
non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

ScoreManager Static Analysis Findings

Type Severity Location

Code Style ScoreManager.sol:L33

The linked variable has no visibility specifier explicitly set.

src/ScoreManager.sol

SMR-01S: Inexistent Visibility Specifier

Description:

Example:

uint256[32] __gap;

SOL

33

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

A public visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context
we advise the variable to be set as internal instead of public as a matter of optimization.

Recommendation:

Alleviation:

StakingManager Static Analysis Findings

Type Severity Location

Code Style StakingManager.sol:L47

The linked variable has no visibility specifier explicitly set.

src/StakingManager.sol

SME-01S: Inexistent Visibility Specifier

Description:

Example:

uint256[32] __gap;

SOL

47

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

A public visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context
we advise the variable to be set as internal instead of public as a matter of optimization.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization StakingManager.sol:L76-L90, L223-L229, L239-L244, L246-L248,
L250-L252

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/StakingManager.sol

SME-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function initialize(address _auctionAddress) external initializer {

 stakeAmount = 32 ether;

 maxBatchDepositSize = 16;

 __Pausable_init();

 __Ownable_init();

 __UUPSUpgradeable_init();

 __ReentrancyGuard_init();

 auctionInterfaceInstance = IAuctionManager(_auctionAddress);

 depositContractEth2 = IDepositContract(

 0xff50ed3d0ec03aC01D4C79aAd74928BFF48a7b2b

);

}

SOL

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

All referenced instances of address arguments are properly sanitized via require checks ensuring they are
non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

TNFT Static Analysis Findings

Type Severity Location

Code Style TNFT.sol:L13

The linked variable has no visibility specifier explicitly set.

src/TNFT.sol

TNF-01S: Inexistent Visibility Specifier

Description:

Example:

uint256[32] __gap;

SOL

13

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

A public visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context
we advise the variable to be set as internal instead of public as a matter of optimization.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization TNFT.sol:L19-L25

The linked function accepts an address argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

src/TNFT.sol

TNF-02S: Inexistent Sanitization of Input Address

Description:

Impact:

Example:

function initialize(address _stakingManagerAddress) initializer external {

 __ERC721_init("Transferrable NFT", "TNFT");

 __Ownable_init();

 __UUPSUpgradeable_init();

 stakingManagerAddress = _stakingManagerAddress;

}

SOL

19

20

21

22

23

24

25

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that the address specified is non-zero.

The referenced instance of an address argument is properly sanitized via a require check ensuring that it
is non-zero, fully alleviating this exhibit.

Recommendation:

Alleviation:

AuctionManager Manual Review Findings

Type Severity Location

Centralization Concern AuctionManager.sol:L285-L291, L295-L299

The AuctionManager::setProtocolRevenueManager &
AuctionManager::setStakingManagerContractAddress permit the protocolRevenueManager &
stakingManagerContractAddress variables respectively to be set after the contract's initialization due to
circular dependencies, however, each function can be invoked an arbitrary number of times.

src/AuctionManager.sol

AMR-01M: Inexplicable Capability of Re-Invocation

Description:

Example:

/// @notice Sets an instance of the protocol revenue manager

/// @dev Needed to process an auction fee

/// @param _protocolRevenueManager the addres of the protocol manager

/// @notice Performed this way due to circular dependencies

function setProtocolRevenueManager(

 address _protocolRevenueManager

) external onlyOwner {

 protocolRevenueManager = IProtocolRevenueManager(

 _protocolRevenueManager

);

}

/// @notice Sets the stakingManagerContractAddress address in the current contract

/// @param _stakingManagerContractAddress new stakingManagerContract address

function setStakingManagerContractAddress(

 address _stakingManagerContractAddress

) external onlyOwner {

 stakingManagerContractAddress = _stakingManagerContractAddress;

}

SOL

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L285-L291
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L295-L299

As both the ProtocolRevenueManager & StakingManager contracts represent an upgradeable module, we
advise the referenced functions to be invoke-able only once.

All referenced functions have had require checks introduced that ensure they cannot be re-invoked
beyond their initialization, alleviating this exhibit's concerns fully.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity AuctionManager.sol:L60-L77

The AuctionManager contract is meant to be an upgradeable contract that is initialized via the
AuctionManager::initialize function, however, the base implementation of AuctionManager is not
disabling the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/AuctionManager.sol

AMR-02M: Inexistent Disable of Initializer

Description:

Impact:

Example:

function initialize(

 address _nodeOperatorManagerContract

) external initializer {

 whitelistBidAmount = 0.001 ether;

 minBidAmount = 0.01 ether;

 maxBidAmount = 5 ether;

 numberOfBids = 1;

 whitelistEnabled = true;

 nodeOperatorManagerInterface = INodeOperatorManager(

 _nodeOperatorManagerContract

);

 __Pausable_init();

 __Ownable_init();

 __UUPSUpgradeable_init();

 __ReentrancyGuard_init();

}

SOL

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L60-L77

We advise a constructor to be introduced to AuctionManager that executes
Initializable::_disableInitializers , ensuring that the base implementation of AuctionManager
cannot be initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization AuctionManager.sol:L121

The _bidSize the user specifies for an AuctionManager::createBid call is insufficiently sanitized as it is
permitted to be 0 , causing the function to "succeed" as a no-op.

While the _bidSize is not sanitized adequately, no vulnerability arises from this behaviour and as such the
finding has been classified as "informational".

src/AuctionManager.sol

AMR-03M: Insufficient Validation of Bid Size

Description:

Impact:

Example:

uint64 keysRemaining = nodeOperatorManagerInterface.getNumKeysRemaining(

 msg.sender

);

require(_bidSize <= keysRemaining, "Insufficient public keys");

SOL

118

119

120

121

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L83-L155

We advise the referenced require check to ensure that _bidSize is a non-zero number, guaranteeing that
an AuctionManager::createBid execution will be accompanied by at least one bid creation.

A require check was adequately introduced to the AuctionManager::createBid function ensuring that
the _bidSize is non-zero and thus preventing no-op AuctionManager::createBid transactions from
successfully executing.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L83-L155
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L83-L155
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L83-L155

Type Severity Location

Logical Fault AuctionManager.sol:L166-L183

The AuctionManager::cancelBid function will incorrectly clean up the data entries associated with a
particular bid ID as it will only set its isActive status to false .

Apart from not properly deleting the bid entries, the code also decrements the numberOfActiveBids after
the external distribution of funds to the msg.sender has been performed. As a result, if the
StakingManager::batchDepositWithBidIds function is invoked during this time the code will insufficiently
sanitize the number of bids that are attempted to be made.

src/AuctionManager.sol

AMR-04M: Improper Entry Clean-Up

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L95-L144

/// @notice Cancels a specified bid by de-activating it

/// @dev Require the bid to exist and be active

/// @param _bidId the ID of the bid to cancel

function cancelBid(uint256 _bidId) public whenNotPaused {

 require(bids[_bidId].bidderAddress == msg.sender, "Invalid bid");

 require(bids[_bidId].isActive == true, "Bid already cancelled");

 // Cancel the bid by de-activating it

 bids[_bidId].isActive = false;

 // Get the value of the cancelled bid to refund

 uint256 bidValue = bids[_bidId].amount;

 // Refund the user with their bid amount

 (bool sent,) = msg.sender.call{value: bidValue}("");

 require(sent, "Failed to send Ether");

 numberOfActiveBids--;

 emit BidCancelled(_bidId);

}

SOL

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

We advise the code to delete the bid entirely (i.e. delete bids[_bidId]) after the bidValue has been
extracted and to also decrement the numberOfActiveBids before the funds are distributed to the
msg.sender , ensuring that the code conforms to the Checks-Effects-Interactions pattern and that the bid is
properly removed from the system.

The numberOfActiveBids value is properly decremented prior to the disbursement of funds to the
msg.sender , preventing the contract from having an interim corrupt state and thus conforming to the CEI
pattern.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization AuctionManager.sol:L304

The AuctionManager::setMinBidPrice function will permit a new minBidAmount to be set, however, the
validation it performs does not include the whitelistBidAmount which must be less-than the newly set
minBidAmount .

It is possible to misconfigure the contract and have a whitelist bid amount that is greater-than the current
minimum bid amount, eliminating the benefits of whitelisted bids.

src/AuctionManager.sol

AMR-05M: Insufficient Validation of Minimum Bid Amount

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L303-L306

/// @notice Updates the minimum bid price

/// @param _newMinBidAmount the new amount to set the minimum bid price as

function setMinBidPrice(uint64 _newMinBidAmount) external onlyOwner {

 require(_newMinBidAmount < maxBidAmount, "Min bid exceeds max bid");

 minBidAmount = _newMinBidAmount;

}

/// @notice Updates the maximum bid price

/// @param _newMaxBidAmount the new amount to set the maximum bid price as

function setMaxBidPrice(uint64 _newMaxBidAmount) external onlyOwner {

 require(_newMaxBidAmount > minBidAmount, "Min bid exceeds max bid");

 maxBidAmount = _newMaxBidAmount;

}

/// @notice Updates the minimum bid price for a whitelisted address

/// @param _newAmount the new amount to set the minimum bid price as

function updateWhitelistMinBidAmount(

 uint128 _newAmount

) external onlyOwner {

 require(_newAmount < minBidAmount && _newAmount > 0, "Invalid Amount");

 whitelistBidAmount = _newAmount;

}

SOL

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

We advise the require check referenced to be updated, ensuring that _newMinBidAmount is greater-than
the current whitelistBidAmount .

The AuctionManager::setMinBidPrice function was properly updated to ensure that the
_newMinBidAmount is greater-than the whitelistBidAmount , upholding the contract's guarantee that a
whitelist bid amount is less than the minimum permitted for a regular bid.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L303-L306

BNFT Manual Review Findings

Type Severity Location

Standard Conformity BNFT.sol:L20-L26

The BNFT contract is meant to be an upgradeable contract that is initialized via the BNFT::initialize
function, however, the base implementation of BNFT is not disabling the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/BNFT.sol

BNF-01M: Inexistent Disable of Initializer

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L20-L26

contract BNFT is ERC721Upgradeable, UUPSUpgradeable, OwnableUpgradeable {

 //--

 //--------------------------------- STATE-VARIABLES ----------------------------

 //--

 address public stakingManagerAddress;

 uint256[32] __gap;

 //--

 //---------------------------- STATE-CHANGING FUNCTIONS ------------------------

 //--

 function initialize(address _stakingManagerAddress) initializer external {

 __ERC721_init("Bond NFT", "BNFT");

 __Ownable_init();

 __UUPSUpgradeable_init();

 stakingManagerAddress = _stakingManagerAddress;

 }

SOL

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

We advise a constructor to be introduced to BNFT that executes
Initializable::_disableInitializers , ensuring that the base implementation of BNFT cannot be
initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault BNFT.sol:L36-L44

The BNFT::transferFrom function override is meant to disallow any transfers to occur unless they are
part of BNFT::mint operations, however, the methodology applied solely overrides the
ERC721Upgradeable::transferFrom function and does not affect other functions, such as
ERC721Upgradeable::safeTransferFrom .

The BNFT asset is presently transferrable via the ERC721Upgradeable::safeTransferFrom function as the
contract incorrectly overrides only the BNFT::transferFrom function.

src/BNFT.sol

BNF-02M: Incorrect Override of Functionality

Description:

Impact:

Example:

/// @notice Mints NFT to required user

/// @dev Only through the staking contratc and not by an EOA

/// @param _reciever receiver of the NFT

/// @param _validatorId the ID of the NFT

function mint(address _reciever, uint256 _validatorId) external onlyStakingManager {

 _safeMint(_reciever, _validatorId);

}

//ERC721 transfer function being overidden to make it soulbound

function transferFrom(

 address from,

 address to,

 uint256 tokenId

) public virtual override(ERC721Upgradeable) {

 require(from == address(0), "Err: token is SOUL BOUND");

 super.transferFrom(from, to, tokenId);

}

SOL

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L37-L44
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L32-L34
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L37-L44

We advise the ERC721Upgradeable::_beforeTokenTransfer hook to be overridden instead, allowing it to
be invoked solely when from == address(0) and thus capturing all types of "transfer" cases that the
ERC721Upgradeable may implement.

The contract now properly overrides the ERC721Upgradeable::_beforeTokenTransfer function, ensuring
its transfer restrictions are applied in all types of transfers performed by the EIP-20 asset.

Recommendation:

Alleviation:

https://eips.ethereum.org/EIPS/eip-20

ClaimReceiverPool Manual Review Findings

Type Severity Location

Standard Conformity ClaimReceiverPool.sol:L72-L90

The ClaimReceiverPool contract is meant to be an upgradeable contract that is initialized via the
ClaimReceiverPool::initialize function, however, the base implementation of ClaimReceiverPool is
not disabling the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/ClaimReceiverPool.sol

CRP-01M: Inexistent Disable of Initializer

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L72-L90

/// @notice initialize to set variables on deployment

function initialize(

 address _rEth,

 address _wstEth,

 address _sfrxEth,

 address _cbEth,

 address _scoreManager

) external initializer {

 rETH = _rEth;

 wstETH = _wstEth;

 sfrxETH = _sfrxEth;

 cbETH = _cbEth;

 scoreManager = IScoreManager(_scoreManager);

 __Pausable_init();

 __Ownable_init();

 __UUPSUpgradeable_init();

 __ReentrancyGuard_init();

}

SOL

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

We advise a constructor to be introduced to ClaimReceiverPool that executes
Initializable::_disableInitializers , ensuring that the base implementation of ClaimReceiverPool
cannot be initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault ClaimReceiverPool.sol:L247-L248

The ClaimReceiverPool::_swapExactInputSingle function that is extensively in use by the
ClaimReceiverPool::deposit function performs an on-chain Uniswap V3 swap without specifying any
form of slippage protection, rendering each user's deposits fully susceptible to slippage attacks.

Whenever a user wishes to deposit the funds they had staked in the early adopter pool, all their non-native
assets will be fully susceptible to on-chain sandwich attacks that would greatly impact the end-result of their
deposit to the protocol.

src/ClaimReceiverPool.sol

CRP-02M: Inexistent Slippage Protection

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L233-L252
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L105-L155

function _swapExactInputSingle(

 uint256 _amountIn,

 address _tokenIn

) internal returns (uint256 amountOut) {

 IERC20(_tokenIn).approve(address(router), _amountIn);

 ISwapRouter.ExactInputSingleParams memory params = ISwapRouter

 .ExactInputSingleParams({

 tokenIn: _tokenIn,

 tokenOut: wEth,

 fee: poolFee,

 recipient: address(this),

 deadline: block.timestamp,

 amountIn: _amountIn,

 amountOutMinimum: 0,

 sqrtPriceLimitX96: 0

 });

 amountOut = router.exactInputSingle(params);

}

SOL

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

As the user's assets are swapped directly and are the only assets affected by the slippage, we advise the
ClaimReceiverPool::deposit function to accept an array of arguments that indicate what slippage should
be applied on each asset, permitting the users to control the amount they will ultimately deposit to the
system.

To note, this feature would need to be accompanied by a fully-fledged front-end that enables the user to
specify these slippage levels properly akin to other DeFi protocols.

The ClaimReceiverPool::deposit flow was adjusted per our recommendation, accepting slippage
arguments in the form of basis points for each of the swaps to be performed and thus alleviating this exhibit.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L105-L155
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ClaimReceiverPool.sol#L105-L155

Type Severity Location

Logical Fault ClaimReceiverPool.sol:L105-L155

The deposit flow of the ClaimReceiverPool appears to contradict the EarlyAdopterPool implementation
as the EarlyAdopterPool implementation was meant to point to the contract and transfer all the user's
funds directly to it.

As the EarlyAdopterPool and ClaimReceiverPool implementations are incompatible, the
EarlyAdopterPool would transfer user funds to the ClaimReceiverPool and the users would not be able
to access / claim them as part of their deposit.

src/ClaimReceiverPool.sol

CRP-03M: Inexplicable Deposit Flow

Description:

Impact:

Example:

function _swapERC20ForETH(address _token, uint256 _amount) internal returns (uint256)

 if (_amount == 0) {

 return 0;

 }

 IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);

 uint256 amountOut = _swapExactInputSingle(_amount, _token);

 wethContract.withdraw(amountOut);

 return amountOut;

}

SOL

223

224

225

226

227

228

229

230

231

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault

We advise the ClaimReceiverPool to be revised, relying on the ClaimReceiverPool::deposit arguments
that are verified by the Merkle Proof and not transferring any assets of the user via _swapERC20ForETH / the
call's msg.value as these assets would have already been automatically deposited by the
EarlyAdopterPool .

The EtherFi team evaluated this exhibit and has decided to proceed with a different deposit flow rendering
the EarlyAdopterPool implementation's data points unusable. As such, we consider this exhibit nullified as
it is no longer relevant.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L105-L155

Type Severity Location

Logical Fault ClaimReceiverPool.sol:L229

The ClaimReceiverPool::_swapERC20ForETH function will attempt to unwrap the WETH asset the contract
has received via the WETH::withdraw function, however, such an operation will fail as the
ClaimReceiverPool does not have any receive function declared.

The ClaimReceiverPool is presently incapable of adequately unwrapping the assets it receives from an EIP-
20 to WETH swap, rendering the contract's conversion code inoperable.

src/ClaimReceiverPool.sol

CRP-04M: Unsupported Withdrawal Mechanism

Description:

Impact:

Example:

function _swapERC20ForETH(address _token, uint256 _amount) internal returns (uint256)

 if (_amount == 0) {

 return 0;

 }

 IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);

 uint256 amountOut = _swapExactInputSingle(_amount, _token);

 wethContract.withdraw(amountOut);

 return amountOut;

}

SOL

223

224

225

226

227

228

229

230

231

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L223-L231
https://eips.ethereum.org/EIPS/eip-20

We advise a receive function to be declared that ensures its msg.sender is the wethContract address,
permitting the WETH asset to be properly unwrapped post-swap.

A receive function was properly introduced to the contract ensuring that it can successfully receive native
funds as part of its WETH::withdraw operation.

Recommendation:

Alleviation:

EarlyAdopterPool Manual Review Findings

Type Severity Location

Mathematical Operations EarlyAdopterPool.sol:L224

The EarlyAdopterPool::calculateUserPoints function will yield a value whose accuracy is inflated as the
decimal normalization performed at the end is incorrect.

The severity of this exhibit will be adjusted depending on the desirable accuracy of points by the EtherFi
team.

src/EarlyAdopterPool.sol

EAP-01M: Improper Accuracy of Point Calculations

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#mathematical-operations
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L204-L225

/// @notice Calculates how many points a user currently has owed to them

/// @return the amount of points a user currently has accumulated

function calculateUserPoints(address _user) public view returns (uint256) {

 uint256 lengthOfDeposit;

 if (claimingOpen == 0) {

 lengthOfDeposit = block.timestamp - depositInfo[_user].depositTime;

 } else {

 lengthOfDeposit = endTime - depositInfo[_user].depositTime;

 }

 //Scaled by 1000, therefore, 1005 would be 1.005

 uint256 userMultiplier = Math.min(

 2000,

 1000 + ((lengthOfDeposit * 10) / 2592) / 10

);

 uint256 totalUserBalance = depositInfo[_user].etherBalance +

 depositInfo[_user].totalERC20Balance;

 //Formula for calculating points total

 return

 ((Math.sqrt(totalUserBalance) * lengthOfDeposit) *

 userMultiplier) / 1e14;

}

SOL

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

In detail, if the "points" of a user are desired to be in "per-second" accuracy this is not presently achieved by
the contract. The contract should perform a division by 1e18 (to normalize the totalUserBalance) and
another division by 1e3 or 100_0 to normalize the userMultiplier .

Presently, the contract performs a division by 1e14 that causes the final point result to have an accuracy of
1e7 which is arbitrary. We advise the code to be corrected and the accuracy of
EarlyAdopterPool::calculateUserPoints to be clearly documented.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L204-L225

Type Severity Location

Centralization Concern EarlyAdopterPool.sol:L174, L177

The "points" a user collects as their deposit remains in the EarlyAdopterPool contract are utilized solely in
an off-chain manner as they are emitted in the Fundsclaimed event and are not utilized anywhere else.

src/EarlyAdopterPool.sol

EAP-02M: Pure Off-Chain Point Utilization

Description:

Example:

/// @notice Transfers users funds to a new contract such as LP

/// @dev can only call once receiver contract is ready and claiming is open

function claim() public nonReentrant {

 require(claimingOpen == 1, "Claiming not open");

 require(

 claimReceiverContract != address(0),

 "Claiming address not set"

);

 require(block.timestamp <= claimDeadline, "Claiming is complete");

 require(depositInfo[msg.sender].depositTime != 0, "No deposit stored");

 uint256 pointsRewarded = calculateUserPoints(msg.sender);

 transferFunds(1);

 emit Fundsclaimed(msg.sender, pointsRewarded);

}

SOL

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern

We advise the utilization of points to be revisited, potentially enforcing an integration between
EarlyAdopterPool and ScoreManager for this particular pool only as presently it is difficult to ascertain
whether the points gathered in the EarlyAdopterPool have been properly replayed in the ScoreManager
contract.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault EarlyAdopterPool.sol:L180-L188

The EarlyAdopterPool::setClaimingOpen function can be invoked multiple times at will, resetting the
claimDeadline as well as the endTime incorrectly on each invocation and significantly affecting the point
calculations.

A re-invocation of EarlyAdopterPool::setClaimingOpen will cause points reported by
EarlyAdopterPool::claim to become inflated and causing the "total" points of the pool to also be
miscalculated.

src/EarlyAdopterPool.sol

EAP-03M: Inexistent Prevention of Re-Invocation

Description:

Impact:

Example:

/// @notice Sets claiming to be open, to allow users to claim their points

/// @param _claimDeadline the amount of time in days until claiming will close

function setClaimingOpen(uint256 _claimDeadline) public onlyOwner {

 claimDeadline = block.timestamp + (_claimDeadline * 86400);

 claimingOpen = 1;

 endTime = block.timestamp;

 emit ClaimingOpened(claimDeadline);

}

SOL

180

181

182

183

184

185

186

187

188

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L182-L188
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L182-L188
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L165-L178

We advise the function to be invoke-able only once, ensuring that a non-zero _claimDeadline has also
been specified during the call.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault EarlyAdopterPool.sol:L112, L144

The EarlyAdopterPool::OnlyCorrectAmount modifier is meant to prevent deposits that do not fall within
the 0.1 ether and 100 ether bounds, however, the check is applied to the per-deposit amount rather
than the total amount of a user.

The limitation of an EarlyAdopterPool::deposit call can be bypassed by performing multiple deposits
thus defeating its purpose.

src/EarlyAdopterPool.sol

EAP-04M: Potentially Redundant Amount Restriction

Description:

Impact:

Example:

modifier OnlyCorrectAmount(uint256 _amount) {

 require(

 _amount >= 0.1 ether && _amount <= 100 ether,

 "Incorrect Deposit Amount"

);

 _;

}

SOL

314

315

316

317

318

319

320

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L314-L320
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138

We advise the modifier's purpose to be revisited and it to potentially factor in the existing deposit of a user
as it is possible to exceed the 100 ether mark by depositing the same asset multiple times with 100 ether
per deposit.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault EarlyAdopterPool.sol:L124, L148

The EarlyAdopterPool::deposit and EarlyAdopterPool::depositEther functions will unfairly reset the
global depositTime of the user that applies to all assets deposited to the pool.

The system presently favours single-asset deposits over multi-asset deposits as the latter will suffer "loss-of-
time" between deposits.

src/EarlyAdopterPool.sol

EAP-05M: Unfair Reset of Deposit Time

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L141-L153

/// @notice deposits ERC20 tokens into contract

/// @dev User must have approved contract before

/// @param _erc20Contract erc20 token contract being deposited

/// @param _amount amount of the erc20 token being deposited

function deposit(address _erc20Contract, uint256 _amount)

 external

 OnlyCorrectAmount(_amount)

 DepositingOpen

 whenNotPaused

{

 require(

 (_erc20Contract == rETH ||

 _erc20Contract == sfrxETH ||

 _erc20Contract == wstETH ||

 _erc20Contract == cbETH),

 "Unsupported token"

);

 depositInfo[msg.sender].depositTime = block.timestamp;

 depositInfo[msg.sender].totalERC20Balance += _amount;

 userToErc20Balance[msg.sender][_erc20Contract] += _amount;

 require(IERC20(_erc20Contract).transferFrom(msg.sender, address(this), _amount), "

 emit DepositERC20(msg.sender, _amount);

 emit ERC20TVLUpdated(

 rETHInstance.balanceOf(address(this)),

 wstETHInstance.balanceOf(address(this)),

 sfrxETHInstance.balanceOf(address(this)),

 cbETHInstance.balanceOf(address(this)),

 address(this).balance,

 getContractTVL()

);

}

/// @notice deposits Ether into contract

function depositEther()

 external

 payable

 OnlyCorrectAmount(msg.value)

 DepositingOpen

 whenNotPaused

{

 depositInfo[msg.sender].depositTime = block.timestamp;

 depositInfo[msg.sender].etherBalance += msg.value;

emit DepositEth(msg sender msg value);

SOL

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

 emit DepositEth(msg.sender, msg.value);

 emit EthTVLUpdated(address(this).balance, getContractTVL());

}

151

152

153

We advise the code to either retain a depositTime per asset, or to expose a single function via which all
relevant assets can be deposited in a single call. In the present implementation, if a user wishes to deposit
multiple assets the time elapsed between each deposit will be "lost" as the depositTime will only be reset
to the latest deposit's timestamp.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

EtherFiNode Manual Review Findings

Type Severity Location

Standard Conformity EtherFiNode.sol:L25-L29

The EtherFiNode::initialize function is meant to be invoked once during the contract's lifetime,
however, the base implementation of EtherFiNode does not initialize itself.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/EtherFiNode.sol

EFN-01M: Inexistent Disable of Initializer

Description:

Impact:

Example:

function initialize(address _etherFiNodesManager) public {

 require(stakingStartTimestamp == 0, "already initialised");

 stakingStartTimestamp = uint32(block.timestamp);

 etherFiNodesManager = _etherFiNodesManager;

}

SOL

25

26

27

28

29

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L25-L29

We advise a constructor to be introduced to EtherFiNode that sets the stakingStartTimestamp to the
maximum of uint256 (type(uint256).max), disabling the base implementation of the EtherFiNode
contract.

The contract has had a constructor introduced that initializes the contract in the custom way we described
in our recommendation, alleviating this exhibit in full.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault EtherFiNode.sol:L333, L340-L341, L379

The EtherFiNode::getFullWithdrawalPayouts calculations assume that the balance in the function is at
minimum equal to 16 ether due to the require check validating that the balance of the contract is
greater-than-or-equal (>=) to 16 ether , however, the actual balance in use by the code is less than that
as the vested auction rewards are subtracted if they cannot be claimed.

As the vested auction fee is not accounted for in the calculations, the principal distribution may be
performed with an incorrect assumption of at least 16 ether in the contract.

src/EtherFiNode.sol

EFN-02M: Incorrect Balance Assumption

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L317-L411

require(

 address(this).balance >= 16 ether,

 "not enough balance for full withdrawal"

);

require(

 phase == VALIDATOR_PHASE.EXITED,

 "validator node is not exited"

);

uint256 balance = address(this).balance -

 (vestedAuctionRewards - _getClaimableVestedRewards());

// (toNodeOperator, toTnft, toBnft, toTreasury)

uint256[] memory payouts = new uint256[](4);

// Compute the payouts for the rewards = (staking rewards + vested auction fee rewards

// the protocol rewards must be paid off already in 'processNodeExit'

if (balance > 32 ether) {

 (

 payouts[0],

 payouts[1],

 payouts[2],

 payouts[3]

) = getRewardsPayouts(

 true,

 false,

 true,

 _splits,

 _scale,

 _splits,

 _scale

);

 balance = 32 ether;

}

// Compute the payouts for the principals to {B, T}-NFTs

uint256 toBnftPrincipal;

uint256 toTnftPrincipal;

if (balance > 31.5 ether) {

 // 31.5 ether < balance <= 32 ether

 toBnftPrincipal = balance - 30 ether;

} else if (balance > 26 ether) {

 // 26 ether < balance <= 31.5 ether

 toBnftPrincipal = 1.5 ether;

} else if (balance > 25.5 ether) {

 // 25.5 ether < balance <= 26 ether

toBnftPrincipal = 1 5 ether (26 ether balance);

SOL

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

 toBnftPrincipal = 1.5 ether - (26 ether - balance);

} else {

 // 16 ether <= balance <= 25.5 ether

 toBnftPrincipal = 1 ether;

}

377

378

379

380

381

We advise the code to evaluate the actual balance as being greater-than-or-equal-to 16 ether .
Alternatively, we advise the other balance-related findings of this audit report to be assimilated to the code
rendering balance evaluations no longer necessary.

The actual post-claimable reward balance is now utilized in the require check ensuring that at least
16 ether are present in the contract, alleviating this exhibit as a result.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization EtherFiNode.sol:L62-L67

The EtherFiNode::markExited function does not sanitize the _exitTimestamp the node allegedly exited
at, permitting it to be misconfigured and cause the contract to underflow in certain operations and
potentially lock funds.

A misconfigured exit timestamp coupled with an exit request can cause the contract to underflow in
EtherFiNode::getNonExitPenalty which is utilized when computing the rewards of a full withdrawal,
causing the node's funds to be permanently locked within it.

src/EtherFiNode.sol

EFN-03M: Inexistent Sanitization of Exit Timestamp

Description:

Impact:

Example:

function markExited(

 uint32 _exitTimestamp

) external onlyEtherFiNodeManagerContract {

 phase = VALIDATOR_PHASE.EXITED;

 exitTimestamp = _exitTimestamp;

}

SOL

62

63

64

65

66

67

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L62-L67
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

We advise the _exitTimestamp to be validated as greater-than the exitRequestTimestamp as well as less-
than the current block.timestamp , indicating that the exit has already been performed and that it was
properly performed after it was requested (if requested at all).

The exit timestamp is properly sanitized as a time in the past, preventing the contract's exit from being
misconfigured.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault EtherFiNode.sol:L81-L85

The EtherFiNode::processVestedAuctionFeeWithdrawal function is meant to be invoked by the
EtherFiNodesManager , however, the system does not validate its caller permitting the
vestedAuctionRewards to be set to 0 even when they have not been distributed.

It is presently possible to eliminate any vested auction rewards by invoking the
EtherFiNode::processVestedAuctionFeeWithdrawal function before the fee has been distributed via
EtherFiNodesManager .

src/EtherFiNode.sol

EFN-04M: Inexistent Caller Validation

Description:

Impact:

Example:

function processVestedAuctionFeeWithdrawal() external {

 if (_getClaimableVestedRewards() > 0) {

 vestedAuctionRewards = 0;

 }

}

SOL

81

82

83

84

85

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L81-L85
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L81-L85

We advise proper access control to be imposed on this function, ensuring that the vested auction rewards
cannot be permanently locked in the EtherFiNode instance.

The EtherFiNode::onlyEtherFiNodeManagerContract modifier has been properly introduced to the
referenced function, ensuring that it is solely called as part of the withdrawal processes in
EtherFiNodesManager .

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/EtherFiNode.sol#L473-L479

Type Severity Location

Language Specific EtherFiNode.sol:L207, L333, L348

The 32 ether and 8 ether values are utilized throughout the EtherFi codebase to represent the base stake
value of an ETH2.0 node and a number up to which ETH2.0 staking rewards can safely accumulate to prior
to being withdrawn and distributed to the various users of an EtherFi node respectively.

As the system evaluates whether a node has "exited", has been "slashed", or has accrued normal staking
rewards using a balance-based measurement, it is possible to influence a node's state via direct transfers. As
an example, you can force a node to exit by directly transferring etherFiNode.balance - 8 ether to it, a
significantly undesirable trait. Additionally, there is no inherent limitation to the staking rewards a node may
acquire and as such, a node that has been inactive for a significant period of time can exceed this number.

It is currently possible to "lock up" rewards of any node until it has been exited at a cost of
etherFiNode.balance - 8 ether per node. This opens up an easy-to-access denial-of-service attack that
renders all nodes of the EtherFi ecosystem susceptible to outside influence.

src/EtherFiNode.sol

EFN-05M: Weak Validation of Node State

Description:

Impact:

Example:

if (rewards >= 32 ether) {

 rewards -= 32 ether;

} else if (rewards >= 8 ether) {

 // In a case of Slashing, without the Oracle, the exact staking rewards cannot be

 // Assume no staking rewards in this case.

 rewards = 0;

}

SOL

205

206

207

208

209

210

211

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

We advise the overall flow of EtherFi to be revised to instead rely on a consistent node state. To achieve this,
an off-chain mechanism to inform the EtherFi ecosystem of operator slashes needs to be introduced,
rendering the need for balance-based state deduction redundant.

Furthermore, calculations within the EtherFiNode implementation need to rely on both the measured
balance of the node as well as the node's state. In order to ensure that they cannot be manipulated between
the time window of a node being slashed and its slash being reflected on-chain, a distribution request
should be throttled via the EtherFiNodeManager using a time threshold in which the EtherFi team is
expected to report the node's slash state on-chain.

The EtherFi team has evaluated this exhibit and has stated that a node operator would be willing to exit to
acquire the "donated" ETH. The vulnerability describes that this can be used to reduce the EtherFi network's
nodes and this has been accepted by the EtherFi team as an intended function. Due to this, we consider the
exhibit as acknowledged.

Recommendation:

Alleviation:

EtherFiNodesManager Manual Review Findings

Type Severity Location

Standard Conformity EtherFiNodesManager.sol:L63-L119

The EtherFiNodesManager contract is meant to be an upgradeable contract that is initialized via the
EtherFiNodesManager::initialize function, however, the base implementation of
EtherFiNodesManager is not disabling the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/EtherFiNodesManager.sol

EFM-01M: Inexistent Disable of Initializer

Description:

Impact:

Example:

function initialize(

 address _treasuryContract,

 address _auctionContract,

 address _stakingManagerContract,

 address _tnftContract,

 address _bnftContract,

 address _protocolRevenueManagerContract

) external initializer {

SOL

63

64

65

66

67

68

69

70

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L63-L119

We advise a constructor to be introduced to EtherFiNodesManager that executes
Initializable::_disableInitializers , ensuring that the base implementation of
EtherFiNodesManager cannot be initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization EtherFiNodesManager.sol:L507, L510-L511

The EtherFiNodesManager::processNodeExit function will not evaluate that the exit being processed is
valid, permitting the same node to be exited twice. In such a case, the node's exit timestamp can be
overridden affecting its penalty calculations.

As the _exitTimestamp will be arbitrarily resettable in the etherFiNode , the penalty it actually applies in its
EtherFiNode::getNonExitPenalty can be influenced by resetting it as "exited".

src/EtherFiNodesManager.sol

EFM-02M: Inexistent Prevention of Duplicate Exit

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L171-L187
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

function _processNodeExit(

 uint256 _validatorId,

 uint32 _exitTimestamp

) internal {

 address etherfiNode = etherfiNodeAddress[_validatorId];

 // Mark EXITED

 IEtherFiNode(etherfiNode).markExited(_exitTimestamp);

 // distribute the protocol reward from the ProtocolRevenueMgr contrac to the valid

 uint256 amount = protocolRevenueManagerInstance

 .distributeAuctionRevenue(_validatorId);

 // Reset its local revenue index to 0, which indicates that no accrued protocol re

 IEtherFiNode(etherfiNode).setLocalRevenueIndex(0);

 // Distribute the payouts for the protocol rewards

 (

 uint256 toOperator,

 uint256 toTnft,

 uint256 toBnft,

 uint256 toTreasury

) = IEtherFiNode(etherfiNode).calculatePayouts(

 amount,

 protocolRewardsSplit,

 SCALE

);

 address operator = auctionInterfaceInstance.getBidOwner(_validatorId);

 address tnftHolder = tnftInstance.ownerOf(_validatorId);

 address bnftHolder = bnftInstance.ownerOf(_validatorId);

 numberOfValidators -= 1;

 IEtherFiNode(etherfiNode).withdrawFunds(

 treasuryContract,

 toTreasury,

 operator,

 toOperator,

 tnftHolder,

 toTnft,

 bnftHolder,

 toBnft

);

emit NodeExitProcessed(validatorId);

SOL

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

 emit NodeExitProcessed(_validatorId);

}

545

546

We advise the code to ensure that the etherFiNode is not in an EXITED phase already, preventing the exit
timestamp of a node from being re-set.

The EtherFi team has stated that they wish to retain the capability of overwriting the exit timestamp of a
node to ensure mistakes can be corrected. As such, we consider this exhibit nullified based on the fact that
it represents desirable behaviour by the EtherFi team.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization EtherFiNodesManager.sol:L439-L445

The EtherFiNodesManager::setNonExitPenaltyDailyRate function is meant to allow the
nonExitPenaltyDailyRate value to be updated, however, no sanitization is performed on the new
_nonExitPenaltyDailyRate value.

A misconfiguration of this variable will cause arithmetic underflows in each EtherFiNode instance thus
rendering the system's non-exit penalty inoperable.

src/EtherFiNodesManager.sol

EFM-03M: Inexistent Sanitization of Non-Exit Penalty Rate

Description:

Impact:

Example:

/// @notice Sets the Non Exit Penalty Daily Rate amount

/// @param _nonExitPenaltyDailyRate the new non exit daily rate

function setNonExitPenaltyDailyRate(

 uint64 _nonExitPenaltyDailyRate

) public onlyOwner {

 nonExitPenaltyDailyRate = _nonExitPenaltyDailyRate;

}

SOL

439

440

441

442

443

444

445

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L441-L445

We advise it to be mandated as less-than-or-equal-to 100 as otherwise calculations within EtherFiNode
will fail to execute properly.

A require check was properly introduced ensuring that the non-exit penalty daily rate is at most equal to
100 .

Recommendation:

Alleviation:

Type Severity Location

Logical Fault EtherFiNodesManager.sol:L191-L196, L260-L266

The EtherFiNodesManager::partialWithdraw and
EtherFiNodesManager::partialWithdrawBatchGroupByOperator functions will permit a node to be
partially withdrawn even after it has been marked as EXITED . In such a case, a significant vulnerability arises
whereby a user performs a partial withdrawal of an exited node and sets the _protocolRewards flag to
true .

The code of both functions will invoke the ProtocolRevenueManager::distributeAuctionRevenue
function which will distribute a value of 0 while setting the node's localRevenueIndex to the latest
globalRevenueIndex . As such, the node will begin accruing auction rewards when it is not part of the
network.

Auction fee funds can be siphoned out from the system improperly by inactive validators as the partial
withdrawal mechanisms inadequately validate the node's current phase.

src/EtherFiNodesManager.sol

EFM-04M: Inexistent Validation of Node State

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L191-L239
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L260-L332
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L107-L116

/// @notice process the rewards skimming

/// @param _validatorId the validator Id

function partialWithdraw(

 uint256 _validatorId,

 bool _stakingRewards,

 bool _protocolRewards,

 bool _vestedAuctionFee

) public nonReentrant {

 address etherfiNode = etherfiNodeAddress[_validatorId];

 uint256 balance = address(etherfiNode).balance;

 require(

 balance < 8 ether,

 "etherfi node contract's balance is above 8 ETH. You should exit the node."

);

 // Retrieve all possible rewards: {Staking, Protocol} rewards and the vested aucti

 (

 uint256 toOperator,

 uint256 toTnft,

 uint256 toBnft,

 uint256 toTreasury

) = getRewardsPayouts(

 _validatorId,

 _stakingRewards,

 _protocolRewards,

 _vestedAuctionFee

);

 if (_protocolRewards) {

 protocolRevenueManagerInstance.distributeAuctionRevenue(

 _validatorId

);

 }

 if (_vestedAuctionFee) {

 IEtherFiNode(etherfiNode).processVestedAuctionFeeWithdrawal();

 }

 address operator = auctionInterfaceInstance.getBidOwner(_validatorId);

 address tnftHolder = tnftInstance.ownerOf(_validatorId);

 address bnftHolder = bnftInstance.ownerOf(_validatorId);

 IEtherFiNode(etherfiNode).withdrawFunds(

 treasuryContract,

 toTreasury,

 operator,

 toOperator,

tnftHolder

SOL

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

 tnftHolder,

 toTnft,

 bnftHolder,

 toBnft

);

}

234

235

236

237

238

239

We advise the partial withdrawal code to validate the phase of an oracle that is being attempted to be
withdrawn from. If the phase is EXITED , the _stakingRewards and _protocolRewards flags should be set
to false thus ensuring that only the _vestedAuctionFee flag can be true as the auction fee may vest
after a protocol has been exited and its full withdrawal has been performed.

As an additional point, these mechanisms should also ensure that a node is in either a LIVE or EXITED state
as otherwise withdrawals should not be possible.

The code of ProtocolRevenueManager was updated to ensure that if a particular EtherFi node has been
marked as exited it is not to be distributed auction revenue rewards. As such, the described vulnerability is
not possible. As such, we consider this exhibit alleviated.

Recommendation:

Alleviation:

Type Severity Location

Language Specific EtherFiNodesManager.sol:L200, L282, L342

The 16 ether and 8 ether values are utilized throughout the EtherFi codebase to represent the base stake
value of an ETH2.0 node and a number up to which ETH2.0 staking rewards can safely accumulate to prior
to being withdrawn and distributed to the various users of an EtherFi node respectively.

As the system evaluates whether a node has "exited", has been "slashed", or has accrued normal staking
rewards using a balance-based measurement, it is possible to influence a node's state via direct transfers. As
an example, you can force a node to exit by directly transferring etherFiNode.balance - 8 ether to it, a
significantly undesirable trait. Additionally, there is no inherent limitation to the staking rewards a node may
acquire and as such, a node that has been inactive for a significant period of time can exceed this number.

It is currently possible to "lock up" rewards of any node until it has been exited at a cost of
etherFiNode.balance - 8 ether per node. This opens up an easy-to-access denial-of-service attack that
renders all nodes of the EtherFi ecosystem susceptible to outside influence.

src/EtherFiNodesManager.sol

EFM-05M: Weak Validation of Node State

Description:

Impact:

Example:

require(

 balance < 8 ether,

 "etherfi node contract's balance is above 8 ETH. You should exit the node."

);

SOL

199

200

201

202

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

We advise the overall flow of EtherFi to be revised to instead rely on a consistent node state. To achieve this,
an off-chain mechanism to inform the EtherFi ecosystem of operator slashes needs to be introduced,
rendering the need for balance-based state deduction redundant.

Furthermore, calculations within the EtherFiNode implementation need to rely on both the measured
balance of the node as well as the node's state. In order to ensure that they cannot be manipulated between
the time window of a node being slashed and its slash being reflected on-chain, a distribution request
should be throttled via the EtherFiNodeManager using a time threshold in which the EtherFi team is
expected to report the node's slash state on-chain.

The EtherFi team has evaluated this exhibit and has stated that a node operator would be willing to exit to
acquire the "donated" ETH. The vulnerability describes that this can be used to reduce the EtherFi network's
nodes and this has been accepted by the EtherFi team as an intended function. Due to this, we consider the
exhibit as acknowledged.

Recommendation:

Alleviation:

NodeOperatorManager Manual Review Findings

Type Severity Location

Centralization Concern NodeOperatorManager.sol:L124-L131

The NodeOperatorManager::setAuctionContractAddress permits the auctionManagerContractAddress
entry to be configured due to circular dependencies, however, it can be invoked an arbitrary number of
times.

src/NodeOperatorManager.sol

NOM-01M: Inexplicable Capability of Re-Invocation

Description:

Example:

/// @notice Sets the auction contract address for verification purposes

/// @dev Set manually due to circular dependencies

/// @param _auctionContractAddress address of the deployed auction contract address

function setAuctionContractAddress(

 address _auctionContractAddress

) public onlyOwner {

 auctionManagerContractAddress = _auctionContractAddress;

}

SOL

124

125

126

127

128

129

130

131

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L127-L131

Given that the AuctionManager implementation represents an upgradeable contract, we advise the code to
allow setting the auctionManagerContractAddress only once thus ensuring that the contract's operation
cannot be compromised via privilege misuse.

The referenced function has had a require check introduced to ensure it cannot be re-invoked beyond its
initialization, alleviating this exhibit's concerns fully.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault NodeOperatorManager.sol:L50, L137-L149

The NodeOperatorManager::_verifyWhitelistedAddress function invoked during a
NodeOperatorManager::registerNodeOperator invocation is unrestrictive, permitting the transaction to
succeed and a user to register as a node operator even if they are not part of the whitelist.

In the current implementation, any user can register as a node operator with valid KeyData regardless of
whether they have been explicitly authorized.

Even if the system's design is to allow a user to register as a node operator without being present in the
whitelist, the current code is incorrect as the user would have no way to re-enter the whitelist after they have
registered due to the require check at the top of the function. As such, the current behaviour is incorrect
regardless of the system's intended design.

src/NodeOperatorManager.sol

NOM-02M: Incorrect Verification of Whitelist

Description:

Impact:

Example:

function _verifyWhitelistedAddress(

 address _user,

 bytes32[] calldata _merkleProof

) internal returns (bool whitelisted) {

 whitelisted = MerkleProof.verify(

 _merkleProof,

 merkleRoot,

 keccak256(abi.encodePacked(_user))

);

 if (whitelisted) {

 whitelistedAddresses[_user] = true;

 }

}

SOL

137

138

139

140

141

142

143

144

145

146

147

148

149

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L137-L149
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L37-L57

We advise the NodeOperatorManager::_verifyWhitelistedAddress code to be updated, evaluating the
whitelisted status in a require check instead.

The EtherFi team has stated that this is intended behaviour and that they do not intend to allow users to
whitelist after they have been registered. As such, we consider this exhibit nullified as it outlines desirable
behaviour by the EtherFi team.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L137-L149

ProtocolRevenueManager Manual Review Findings

Type Severity Location

Centralization Concern ProtocolRevenueManager.sol:L121-L125, L130-L134

The ProtocolRevenueManager::setEtherFiNodesManagerAddress &
ProtocolRevenueManager::setAuctionManagerAddress permit the etherFiNodesManager &
auctionManager variables respectively to be set after the contract's initialization due to circular
dependencies, however, each function can be invoked an arbitrary number of times.

src/ProtocolRevenueManager.sol

PRM-01M: Inexplicable Capability of Re-Invocation

Description:

Example:

/// @notice Instantiates the interface of the node manager for integration

/// @dev Set manually due to cirular dependencies

/// @param _etherFiNodesManager etherfi node manager address to set

function setEtherFiNodesManagerAddress(

 address _etherFiNodesManager

) external onlyOwner {

 etherFiNodesManager = IEtherFiNodesManager(_etherFiNodesManager);

}

/// @notice Instantiates the interface of the auction manager for integration

/// @dev Set manually due to cirular dependencies

/// @param _auctionManager auction manager address to set

function setAuctionManagerAddress(

 address _auctionManager

) external onlyOwner {

 auctionManager = IAuctionManager(_auctionManager);

}

SOL

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L121-L125
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L130-L134

As both the EtherFiNodesManager & AuctionManager contracts represent an upgradeable module, we
advise the referenced functions to be invoke-able only once.

All referenced functions have had require checks introduced that ensure they cannot be re-invoked
beyond their initialization, alleviating this exhibit's concerns fully.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity ProtocolRevenueManager.sol:L39-L48

The ProtocolRevenueManager contract is meant to be an upgradeable contract that is initialized via the
ProtocolRevenueManager::initialize function, however, the base implementation of
ProtocolRevenueManager is not disabling the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/ProtocolRevenueManager.sol

PRM-02M: Inexistent Disable of Initializer

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L39-L48

contract ProtocolRevenueManager is

 Initializable,

 IProtocolRevenueManager,

 PausableUpgradeable,

 OwnableUpgradeable,

 ReentrancyGuardUpgradeable,

 UUPSUpgradeable

{

 //--

 //--------------------------------- STATE-VARIABLES ----------------------------

 //--

 IEtherFiNodesManager public etherFiNodesManager;

 IAuctionManager public auctionManager;

 uint256 public globalRevenueIndex;

 uint128 public vestedAuctionFeeSplitForStakers;

 uint128 public auctionFeeVestingPeriodForStakersInDays;

 uint256[32] __gap;

 //--

 //---------------------------- STATE-CHANGING FUNCTIONS ------------------------

 //--

 function initialize() external initializer {

SOL

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

We advise a constructor to be introduced to ProtocolRevenueManager that executes
Initializable::_disableInitializers , ensuring that the base implementation of
ProtocolRevenueManager cannot be initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization ProtocolRevenueManager.sol:L149

The ProtocolRevenueManager::setAuctionRewardSplitForStakers function does not sanitize its input
argument, permitting an un-serviceable fee split to be set.

A misconfigured fee split will cause the local and global revenue indexes of the EtherFi protocol to be
misconfigured, greatly affecting the system's reward accounting.

src/ProtocolRevenueManager.sol

PRM-03M: Inexistent Sanitization of Fee Proportion

Description:

Impact:

Example:

/// @notice set the auction reward split for stakers

/// @param _split vesting period in days

function setAuctionRewardSplitForStakers(

 uint128 _split

) external onlyOwner {

 vestedAuctionFeeSplitForStakers = _split;

}

SOL

144

145

146

147

148

149

150

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L146-L150

We advise the code to ensure that the input _split is at most equal to 100 , the maximum accuracy
supported by ProtocolRevenueManager::addAuctionRevenue .

The auction reward split is now properly sanitized as being at most 100 , alleviating this exhibit in full.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L73-L103

ScoreManager Manual Review Findings

Type Severity Location

Standard Conformity ScoreManager.sol:L46-L54

The ScoreManager contract is meant to be an upgradeable contract that is initialized via the
ScoreManager::initialize function, however, the base implementation of ScoreManager is not disabling
the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/ScoreManager.sol

SMR-01M: Inexistent Disable of Initializer

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L49-L54

contract ScoreManager is

 IScoreManager,

 Initializable,

 OwnableUpgradeable,

 PausableUpgradeable,

 ReentrancyGuardUpgradeable,

 UUPSUpgradeable

{

 uint32 public numberOfTypes;

 // bytes: indicate the type of the score (like the name of the promotion)

 // address: user wallet address

 // bytes32: a byte stream of user score + etc

 mapping(uint256 => mapping(address => bytes32)) public scores;

 // bytes32: a byte stream of aggregated info of users' scores (e.g., total sum)

 mapping(uint256 => bytes32) public totalScores;

 mapping(address => bool) public allowedCallers;

 mapping(uint256 => bytes) public scoreTypes;

 mapping(bytes => uint256) public typeIds;

 uint256[32] __gap;

 //--

 //------------------------------------- EVENTS ---------------------------------

 //--

 event ScoreSet(address indexed user, uint256 score_typeID, bytes32 data);

 event NewTypeAdded(uint256 Id, bytes ScoreType);

 //--

 //---------------------------- STATE-CHANGING FUNCTIONS ------------------------

 //--

 /// @notice initialize to set variables on deployment

 /// @dev Deploys NFT contracts internally to ensure ownership is set to this contr

 /// @dev AuctionManager contract must be deployed first

 function initialize() external initializer {

 __Pausable_init();

 __Ownable_init();

 __UUPSUpgradeable_init();

 __ReentrancyGuard_init();

 }

SOL

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

We advise a constructor to be introduced to ScoreManager that executes
Initializable::_disableInitializers , ensuring that the base implementation of ScoreManager cannot
be initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

Type Severity Location

Language Specific ScoreManager.sol:L25, L28

The ScoreManager contract utilizes a bytes32 variable for maintaining the scores of a particular type ID
and the users within it, however, contracts such as ClaimReceiverPool and LiquidityPool all cast the
bytes32 values to uint256 values prior to use.

src/ScoreManager.sol

SMR-02M: Inexplicable Data Types

Description:

Example:

// bytes: indicate the type of the score (like the name of the promotion)

// address: user wallet address

// bytes32: a byte stream of user score + etc

mapping(uint256 => mapping(address => bytes32)) public scores;

// bytes32: a byte stream of aggregated info of users' scores (e.g., total sum)

mapping(uint256 => bytes32) public totalScores;

SOL

22

23

24

25

26

27

28

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

We advise the data types of ScoreManager to be converted to uint256 , optimizing and simplifying the
code of the overall EtherFi project significantly as complex type casts from and to bytes32 values would no
longer be necessary.

The uint256 data types are no utilized for both mapping declarations as well as throughout the contract's
codebase, optimizing it significantly.

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization ScoreManager.sol:L62, L74

The ScoreManager::setScore and ScoreManager::setTotalScore functions do not validate that the
supplied typeId is valid.

It is possible to alter scores for a type ID that has not yet been included to the ScoreManager .

src/ScoreManager.sol

SMR-03M: Inexistent Sanitization of Valid Type

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L61-L68
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L73-L78

/// @notice sets the score of a user

/// @dev will be called by approved contracts that can set reward totals

/// @param _typeId the ID of the type of the score

/// @param _user the user to fetch the score for

/// @param _score the score the user will receive in bytes form

function setScore(

 uint256 _typeId,

 address _user,

 bytes32 _score

) external allowedCaller(msg.sender) nonZeroAddress(_user) {

 scores[_typeId][_user] = _score;

 emit ScoreSet(_user, _typeId, _score);

}

/// @notice sets the total score of a score type

/// @param typeId the ID of the type of the score

/// @param _totalScore the total score

function setTotalScore(

 uint256 typeId,

 bytes32 _totalScore

) external allowedCaller(msg.sender) {

 totalScores[typeId] = _totalScore;

}

/// @notice updates the status of a caller

/// @param _caller the address of the contract or EOA that is being updated

/// @param _flag the bool value to update by

function setCallerStatus(address _caller, bool _flag) external onlyOwner nonZeroAddres

 allowedCallers[_caller] = _flag;

}

/// @notice creates a new type of score

/// @param _type the bytes value type being added

function addNewScoreType(bytes memory _type) external onlyOwner returns (uint256) {

 scoreTypes[numberOfTypes] = _type;

 typeIds[_type] = numberOfTypes;

 emit NewTypeAdded(numberOfTypes, _type);

 numberOfTypes++;

 return numberOfTypes - 1;

}

SOL

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

We advise a require check to be introduced ensuring that the provided type ID is less-than the value of
numberOfTypes .

The _typeId supplied as input to a ScoreManager::setScore call is now properly sanitized as being in
existence, alleviating this exhibit in full as the ScoreManager::setTotalScore function is no longer present.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ScoreManager.sol#L61-L68
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ScoreManager.sol#L73-L78

Type Severity Location

Language Specific ScoreManager.sol:L66, L77

The ScoreManager contract is meant to maintain a list of user scores as well as their sum for a particular
typeId , however, the maintenance of the score list's validity is performed entirely manually.

As multiple transactions are required to maintain each score type's validity, a race-condition manifests
whereby users can exploit an incorrect ScoreManager state between adjustment transactions.

As the total score and a user's score would be adjusted in separate transactions, a race condition manifests
during the time window between those two invocations that a user can exploit while possessing an "unfair"
proportion of the total score.

src/ScoreManager.sol

SMR-04M: Improper Score Maintenance Mechanisms

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

/// @notice sets the score of a user

/// @dev will be called by approved contracts that can set reward totals

/// @param _typeId the ID of the type of the score

/// @param _user the user to fetch the score for

/// @param _score the score the user will receive in bytes form

function setScore(

 uint256 _typeId,

 address _user,

 bytes32 _score

) external allowedCaller(msg.sender) nonZeroAddress(_user) {

 scores[_typeId][_user] = _score;

 emit ScoreSet(_user, _typeId, _score);

}

/// @notice sets the total score of a score type

/// @param typeId the ID of the type of the score

/// @param _totalScore the total score

function setTotalScore(

 uint256 typeId,

 bytes32 _totalScore

) external allowedCaller(msg.sender) {

 totalScores[typeId] = _totalScore;

}

SOL

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

We advise the code to expose functions that increment or decrement a user's score and in such a case to
also increment or decrement the total score of the typeId respectively, ensuring that the score list of
ScoreManager is managed automatically.

The code now properly maintains the total score of a _typeId whenever an individual's score is set with the
ScoreManager::setTotalScore function removed, alleviating this exhibit in full.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ScoreManager.sol#L73-L78

StakingManager Manual Review Findings

Type Severity Location

Centralization Concern StakingManager.sol:L223-L229, L239-L244, L246-L248, L250-
L252

The referenced functions permit sensitive configurational variables of the contract to be set at will.

src/StakingManager.sol

SME-01M: Inexplicable Capability of Re-Invocation

Description:

Example:

function setEtherFiNodesManagerAddress(

 address _nodesManagerAddress

) public onlyOwner {

 nodesManagerIntefaceInstance = IEtherFiNodesManager(

 _nodesManagerAddress

);

}

SOL

223

224

225

226

227

228

229

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern

Given that these contracts represent either upgradeable implementations or implementations meant to
remain the same throughout the StakingManager contract's lifetime, we advise the functions to be invoke-
able only once by evaluating whether the variable they adjust has already been set to a non-zero entry.

All referenced functions have had require checks introduced that ensure they cannot be re-invoked
beyond their initialization, alleviating this exhibit's concerns fully.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity StakingManager.sol:L76-L90

The StakingManager contract is meant to be an upgradeable contract that is initialized via the
StakingManager::initialize function, however, the base implementation of StakingManager is not
disabling the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/StakingManager.sol

SME-02M: Inexistent Disable of Initializer

Description:

Impact:

Example:

function initialize(address _auctionAddress) external initializer {

 stakeAmount = 32 ether;

 maxBatchDepositSize = 16;

 __Pausable_init();

 __Ownable_init();

 __UUPSUpgradeable_init();

 __ReentrancyGuard_init();

 auctionInterfaceInstance = IAuctionManager(_auctionAddress);

 depositContractEth2 = IDepositContract(

 0xff50ed3d0ec03aC01D4C79aAd74928BFF48a7b2b

);

}

SOL

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L76-L90

We advise a constructor to be introduced to StakingManager that executes
Initializable::_disableInitializers , ensuring that the base implementation of StakingManager
cannot be initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault StakingManager.sol:L291, L339

Based on the execution flow of AuctionManager and StakingManager , the node operator that will
"register" a validator must be the initial bid creator in the AuctionManager that a "financer" has submitted
the 32 ether required to run the node. As such, the StakingManager::_processDeposit function must
assign the AuctionManager::getBidOwner of the processed bid rather than the msg.sender .

The "auction" system is presently not operating as the same user who submits the 32 ether for a node is
intended to run it, simply acquiring the fee of an auction arbitrarily at no benefit of the bid's creator.

src/StakingManager.sol

SME-03M: Incorrect Data Entry

Description:

Impact:

Example:

/// @notice Update the state of the contract now that a deposit has been made

/// @param _bidId the bid that won the right to the deposit

function _processDeposit(uint256 _bidId) internal {

 bidIdToStaker[_bidId] = msg.sender;

 uint256 validatorId = _bidId;

 address etherfiNode = createEtherfiNode(validatorId);

 nodesManagerIntefaceInstance.setEtherFiNodePhase(

 validatorId,

 IEtherFiNode.VALIDATOR_PHASE.STAKE_DEPOSITED

);

 emit StakeDeposit(msg.sender, _bidId, etherfiNode);

}

SOL

336

337

338

339

340

341

342

343

344

345

346

347

348

349

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L338-L349
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L262-L264

We advise the referenced assignment to be updated accordingly, ensuring a correct execution and "auction"
style flow in the EtherFi codebase.

To note, the way the NFTs of the node's creation are distributed will also need to be governed in trustless
manner by the contract's code rather than being specified by the node operator to ensure the original
bidder also obtains fund-related rights over the node that is created.

The EtherFi team has stated the current flow of execution in the contract is correct and our assumption in
relation to the matching mechanism is incorrect. As such, we consider this exhibit nullified as the code
satisfies EtherFi's business requirements in its current state.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault StakingManager.sol:L299-L304

The ETH2.0 node deposit mechanism of StakingManager is insecure as it suffers from an inherent flaw in
Ethereum's DepositContract . In detail, multiple deposits for the same publicKey can be performed with
the validator being activated solely when all deposits sum to 32 ether .

A caveat of this system is that the ETH2.0 system will honour the withdrawal credentials that were specified
in the first DepositContract::deposit transaction, not necessarily the ones specified in
StakingManager::_registerValidator . As such, it is possible for all ETH2.0 fund related operations (exits,
rewards, etc.) to be redirected to a different address unrelated to the EtherFi protocol. For more information,
consult RocketPool's Withdrawal Credential Exploit Analysis.

It is presently possible to activate an EtherFi node without necessarily setting it as the intended recipient of
an ETH2.0 node's withdrawal, undermining the EtherFi system as a whole.

src/StakingManager.sol

SME-04M: ETH2.0 Validator Front-Run Withdrawal Credential Attack

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L280-L334
https://github.com/rocket-pool/rocketpool-research/blob/master/Reports/withdrawal-creds-exploit.md

/// @notice Creates validator object, mints NFTs, sets NB variables and deposits into

/// @param _validatorId id of the validator to register

/// @param _bNftRecipient the address to receive the minted B-NFT

/// @param _tNftRecipient the address to receive the minted T-NFT

/// @param _depositData data structure to hold all data needed for depositing to the b

/// however, instead of the validator key, it will include the IPFS hash

/// containing the validator key encrypted by the corresponding node operator's public

function _registerValidator(

 uint256 _validatorId,

 address _bNftRecipient,

 address _tNftRecipient,

 DepositData calldata _depositData

) internal {

 require(

 nodesManagerIntefaceInstance.phase(_validatorId) ==

 IEtherFiNode.VALIDATOR_PHASE.STAKE_DEPOSITED,

 "Incorrect phase"

);

 require(bidIdToStaker[_validatorId] == msg.sender, "Not deposit owner");

 address staker = bidIdToStaker[_validatorId];

 bytes memory withdrawalCredentials = nodesManagerIntefaceInstance

 .getWithdrawalCredentials(_validatorId);

 // Deposit to the Beacon Chain

 depositContractEth2.deposit{value: stakeAmount}(

 _depositData.publicKey,

 withdrawalCredentials,

 _depositData.signature,

 _depositData.depositDataRoot

);

 nodesManagerIntefaceInstance.incrementNumberOfValidators(1);

 nodesManagerIntefaceInstance.setEtherFiNodePhase(

 _validatorId,

 IEtherFiNode.VALIDATOR_PHASE.LIVE

);

 nodesManagerIntefaceInstance

 .setEtherFiNodeIpfsHashForEncryptedValidatorKey(

 _validatorId,

 _depositData.ipfsHashForEncryptedValidatorKey

);

// Let valiadatorId = nftTokenId

SOL

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

 // Let valiadatorId = nftTokenId

 // Mint {T, B}-NFTs to the Staker

 uint256 nftTokenId = _validatorId;

 TNFTInterfaceInstance.mint(_tNftRecipient, nftTokenId);

 BNFTInterfaceInstance.mint(_bNftRecipient, nftTokenId);

 auctionInterfaceInstance.processAuctionFeeTransfer(_validatorId);

 emit ValidatorRegistered(

 auctionInterfaceInstance.getBidOwner(_validatorId),

 _bNftRecipient,

 _tNftRecipient,

 _validatorId,

 _depositData.publicKey,

 _depositData.ipfsHashForEncryptedValidatorKey

);

}

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

We advise the validator registration mechanism to be revised, performing the deposit to the Beacon chain
but not affecting the EtherFi system (i.e. not incrementing the number of validators, not affecting the node
phase etc.). Afterwards, an entity (such as a DAO or the EtherFi team) that can process off-chain knowledge
will need to validate that the beacon chain registration has been performed with the correct withdrawal
credentials and submit a transaction to a new function in StakingManager that will "activate" the EtherFi
node by setting it to LIVE , adjusting the number of validators, minting the relevant NFTs, transferring the
auction fee, and setting the IPFS hash of the encrypted validator key.

The EtherFi team has stated that they identified this flaw during the audit process, however, the code
appears to not apply a solution for it. Additionally, no issue was present in the GitHub repository that
outlines it. As such, we consider this exhibit not alleviated.

Recommendation:

Alleviation:

TNFT Manual Review Findings

Type Severity Location

Standard Conformity TNFT.sol:L19-L25

The TNFT contract is meant to be an upgradeable contract that is initialized via the TNFT::initialize
function, however, the base implementation of TNFT is not disabling the initializer during its construction.

While not an active threat in this particular instance, base implementations that may perform a
delegatecall to an administrator-defined party can be compromised even if proxied. As such, it is best
practice to always initialize base implementations of proxies automatically on deployment.

src/TNFT.sol

TNF-01M: Inexistent Disable of Initializer

Description:

Impact:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/TNFT.sol#L19-L25

contract TNFT is ERC721Upgradeable, UUPSUpgradeable, OwnableUpgradeable {

 //--

 //--------------------------------- STATE-VARIABLES ----------------------------

 //--

 address public stakingManagerAddress;

 uint256[32] __gap;

 //--

 //---------------------------- STATE-CHANGING FUNCTIONS ------------------------

 //--

 function initialize(address _stakingManagerAddress) initializer external {

 __ERC721_init("Transferrable NFT", "TNFT");

 __Ownable_init();

 __UUPSUpgradeable_init();

 stakingManagerAddress = _stakingManagerAddress;

 }

SOL

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

We advise a constructor to be introduced to TNFT that executes
Initializable::_disableInitializers , ensuring that the base implementation of TNFT cannot be
initialized maliciously.

A constructor was introduced that properly disables the contract's initializers via the
Initializable::_disableInitializers function, disallowing the contract from being initialized at its
logic contract location.

Recommendation:

Alleviation:

AuctionManager Code Style Findings

Type Severity Location

Gas Optimization AuctionManager.sol:L126, L245-L249

The referenced optimization of the iterator's increment statement is ineffective as a private function is
invoked that contains significant overhead.

src/AuctionManager.sol

AMR-01C: Inefficient Optimization of Iterator Increment

Description:

Example:

for (uint256 i = 0; i < _bidSize; i = uncheckedInc(i)) {

SOL

126

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the code to instead optimize the iterator's increment by omitting it from the for declaration and
relocating it at the end of the for loop's body, wrapping the increment statement (++i) in an unchecked
code block.

While the inefficient uncheckedInc invocation was omitted, the code still inefficiently increments the
iterator by performing a simple i++ operation. We advise the operation to be relocated to the end of the
for loop in an unchecked code block and to additionally perform a pre-fix increment operation (++i) as its
more optimal than a post-fix increment operation (i++).

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization AuctionManager.sol:L167, L168, L171, L174, L191, L193, L202,
L204

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

src/AuctionManager.sol

AMR-02C: Inefficient mapping Lookups

Description:

Example:

function cancelBid(uint256 _bidId) public whenNotPaused {

 require(bids[_bidId].bidderAddress == msg.sender, "Invalid bid");

 require(bids[_bidId].isActive == true, "Bid already cancelled");

 // Cancel the bid by de-activating it

 bids[_bidId].isActive = false;

 // Get the value of the cancelled bid to refund

 uint256 bidValue = bids[_bidId].amount;

 // Refund the user with their bid amount

 (bool sent,) = msg.sender.call{value: bidValue}("");

 require(sent, "Failed to send Ether");

 numberOfActiveBids--;

 emit BidCancelled(_bidId);

}

SOL

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

While the bid cancellation mechanism optimized its mapping lookups, the
AuctionManager::updateSelectedBidInformation and AuctionManager::reEnterAuction code
segments were not updated.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L188-L195
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L199-L207

Type Severity Location

Gas Optimization AuctionManager.sol:L158

The linked for loop increments / decrements the iterator "safely" due to Solidity's built-in safe arithmetics
(post- 0.8.X).

src/AuctionManager.sol

AMR-03C: Loop Iterator Optimization

Description:

Example:

for (uint256 i = 0; i < _bidIds.length; i++) {

SOL

158

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the increment / decrement operation to be performed in an unchecked code block as the last
statement within the for loop to optimize its execution cost.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity AuctionManager.sol:L39

The referenced __gap variable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of
variables in storage in the overall contract.

src/AuctionManager.sol

AMR-04C: Non-Standard Gap Size

Description:

Example:

uint256[32] __gap;

SOL

39

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

The methodology employed for calculating the appropriate length for the variable in OpenZeppelin is to
utilize the value of 50 as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. 1 in the case of TNFT). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the length of the gap is directly correlated to the storage layout of the contract
it resides in.

The __gap array's length has been adjusted to a standardized value as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization AuctionManager.sol:L157, L166

The top-level AuctionManager::cancelBidBatch function will apply the
PausableUpgradeable::whenNotPaused modifier and will invoke the AuctionManager::cancelBid
function that also applies the same modifier.

src/AuctionManager.sol

AMR-05C: Redundant Duplicate Application of Access Control

Description:

Example:

function cancelBidBatch(uint256[] calldata _bidIds) external whenNotPaused {

 for (uint256 i = 0; i < _bidIds.length; i++) {

 cancelBid(_bidIds[i]);

 }

}

/// @notice Cancels a specified bid by de-activating it

/// @dev Require the bid to exist and be active

/// @param _bidId the ID of the bid to cancel

function cancelBid(uint256 _bidId) public whenNotPaused {

SOL

157

158

159

160

161

162

163

164

165

166

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161

We advise the PausableUpgradeable::whenNotPaused modifier to be omitted from the top-level
AuctionManager::cancelBidBatch function, optimizing the code's gas cost.

As an alternative optimization, the code of AuctionManager::cancelBid can be relocated to an internal
underscore-prefixed (_) function that is invoked by both AuctionManager::cancelBid and
AuctionManager::cancelBidBatch while retaining the PausableUpgradeable::whenNotPaused modifier
in AuctionManager::cancelBidBatch , ensuring that the batch cancellation operation applies the
PausableUpgradeable::whenNotPaused modifier only once during its execution.

The code of AuctionManager::cancelBid was relocated to an AuctionManager::_cancelBid internal
function that both the AuctionManager::cancelBid and AuctionManager::cancelBidBatch functions
invoke, optimizing the codebase as advised.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L157-L161

BNFT Code Style Findings

Type Severity Location

Standard Conformity BNFT.sol:L14

The referenced __gap variable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of
variables in storage in the overall contract.

src/BNFT.sol

BNF-01C: Non-Standard Gap Size

Description:

Example:

uint256[32] __gap;

SOL

14

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

The methodology employed for calculating the appropriate length for the variable in OpenZeppelin is to
utilize the value of 50 as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. 1 in the case of TNFT). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the length of the gap is directly correlated to the storage layout of the contract
it resides in.

The __gap array's length has been adjusted to a standardized value as advised.

Recommendation:

Alleviation:

ClaimReceiverPool Code Style Findings

Type Severity Location

Gas Optimization ClaimReceiverPool.sol:L126, L139

The referenced declarations are assigned to the same evaluation in two separate variables.

src/ClaimReceiverPool.sol

CRP-01C: Duplicate Invocation of Getter

Description:

Example:

uint256 scoreTypeId = scoreManager.typeIds("Early Adopter Pool");

require(scoreManager.scores(

 scoreTypeId,

 msg.sender) == bytes32(0), "Already Deposited");

require(_points > 0, "You don't have any point to claim");

uint256 _ethAmount = 0;

_ethAmount += msg.value;

_ethAmount += _swapERC20ForETH(rETH, _rEthBal);

_ethAmount += _swapERC20ForETH(wstETH, _wstEthBal);

_ethAmount += _swapERC20ForETH(sfrxETH, _sfrxEthBal);

_ethAmount += _swapERC20ForETH(cbETH, _cbEthBal);

uint256 typeId = scoreManager.typeIds("Early Adopter Pool");

SOL

126

127

128

129

130

131

132

133

134

135

136

137

138

139

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the same variable to be utilized and the second declaration to be omitted entirely, optimizing the
code.

The score system of the deposit flow in the contract has been refactored rendering this exhibit no longer
applicable.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity ClaimReceiverPool.sol:L18

The ClaimReceiverPool contract does not have any __gap variable declared.

src/ClaimReceiverPool.sol

CRP-02C: Inexistent Gap Declaration

Description:

Example:

contract ClaimReceiverPool is

 Initializable,

 PausableUpgradeable,

 OwnableUpgradeable,

 ReentrancyGuardUpgradeable,

 UUPSUpgradeable

{

SOL

18

19

20

21

22

23

24

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

We advise one to be introduced akin to the rest of the codebase.

While a __gap has been introduced to the codebase, it has been introduced in between variable
declarations rather than at the end. We strongly advise its declaration to be relocated to the end of the
contract, permitting upgrade-able variable extensibility in a standardized way.

Recommendation:

Alleviation:

EarlyAdopterPool Code Style Findings

Type Severity Location

Code Style EarlyAdopterPool.sol:L159, L175, L243

The EarlyAdopterPool::transferFunds function is meant to be utilized by the
EarlyAdopterPool::claim and EarlyAdopterPool::withdraw functions with an input argument
signifying whether the funds should be sent to the depositor or the claimReceiverContract , however, this
argument is utilized as a uint256 with two literal values (0 or 1 , with the latter case applying to all values
different than 0).

src/EarlyAdopterPool.sol

EAP-01C: Code Readability Enhancement

Description:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L243-L275
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L165-L178
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L157-L161

/// @notice Transfers funds to relevant parties and updates data structures

/// @param _identifier identifies which contract function called the function

function transferFunds(uint256 _identifier) internal {

 uint256 rETHbal = userToErc20Balance[msg.sender][rETH];

 uint256 wstETHbal = userToErc20Balance[msg.sender][wstETH];

 uint256 sfrxEthbal = userToErc20Balance[msg.sender][sfrxETH];

 uint256 cbEthBal = userToErc20Balance[msg.sender][cbETH];

 uint256 ethBalance = depositInfo[msg.sender].etherBalance;

 depositInfo[msg.sender].depositTime = 0;

 depositInfo[msg.sender].totalERC20Balance = 0;

 depositInfo[msg.sender].etherBalance = 0;

 userToErc20Balance[msg.sender][rETH] = 0;

 userToErc20Balance[msg.sender][wstETH] = 0;

 userToErc20Balance[msg.sender][sfrxETH] = 0;

 userToErc20Balance[msg.sender][cbETH] = 0;

 address receiver;

 if (_identifier == 0) {

 receiver = msg.sender;

 } else {

 receiver = claimReceiverContract;

 }

 require(rETHInstance.transfer(receiver, rETHbal), "Transfer failed");

 require(wstETHInstance.transfer(receiver, wstETHbal), "Transfer failed");

 require(sfrxETHInstance.transfer(receiver, sfrxEthbal), "Transfer failed");

 require(cbETHInstance.transfer(receiver, cbEthBal), "Transfer failed");

 (bool sent,) = receiver.call{value: ethBalance}("");

 require(sent, "Failed to send Ether");

}

SOL

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

We advise an enum to be utilized instead, achieving the same result albeit with much greater code legibility
as well as stricter function behaviour as the EarlyAdopterPool::transferFunds function accepts input
arguments greater than 1 when it should not.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L243-L275

Type Severity Location

Code Style EarlyAdopterPool.sol:L58, L71, L243, L314, L322

The referenced lines contain typographical mistakes (i.e. private variable without an underscore prefix) or
generic documentational errors (i.e. copy-paste) that should be corrected.

src/EarlyAdopterPool.sol

EAP-02C: Generic Typographic Mistakes

Description:

Example:

event Fundsclaimed(

SOL

58

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise them to be corrected enhancing the legibility of the codebase.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EarlyAdopterPool.sol:L131-L135, L136

The Total-Value-Locked (TVL) calculation the contract performs in EarlyAdopterPool::deposit is
inefficient as it will fetch all the balances held by the contract during the emission of the ERC20TVLUpdated
event and then re-fetch them during the execution of EarlyAdopterPool::getContractTVL .

src/EarlyAdopterPool.sol

EAP-03C: Inefficient Contract TVL Calculation

Description:

Example:

emit ERC20TVLUpdated(

 rETHInstance.balanceOf(address(this)),

 wstETHInstance.balanceOf(address(this)),

 sfrxETHInstance.balanceOf(address(this)),

 cbETHInstance.balanceOf(address(this)),

 address(this).balance,

 getContractTVL()

);

SOL

130

131

132

133

134

135

136

137

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L282-L288

We advise the calculations of EarlyAdopterPool::getContractTVL to be replicated in the
EarlyAdopterPool::deposit function by using the same balances that have already been fetched for the
ERC20TVLUpdated event.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L282-L288
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138

Type Severity Location

Gas Optimization EarlyAdopterPool.sol:L124-L125, L148-L149, L208, L210, L218-L219,
L244-L247, L249, L251-L253, L255-L258, L302-L306

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

src/EarlyAdopterPool.sol

EAP-04C: Inefficient mapping Lookups

Description:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

function deposit(address _erc20Contract, uint256 _amount)

 external

 OnlyCorrectAmount(_amount)

 DepositingOpen

 whenNotPaused

{

 require(

 (_erc20Contract == rETH ||

 _erc20Contract == sfrxETH ||

 _erc20Contract == wstETH ||

 _erc20Contract == cbETH),

 "Unsupported token"

);

 depositInfo[msg.sender].depositTime = block.timestamp;

 depositInfo[msg.sender].totalERC20Balance += _amount;

 userToErc20Balance[msg.sender][_erc20Contract] += _amount;

 require(IERC20(_erc20Contract).transferFrom(msg.sender, address(this), _amount), "

 emit DepositERC20(msg.sender, _amount);

 emit ERC20TVLUpdated(

 rETHInstance.balanceOf(address(this)),

 wstETHInstance.balanceOf(address(this)),

 sfrxETHInstance.balanceOf(address(this)),

 cbETHInstance.balanceOf(address(this)),

 address(this).balance,

 getContractTVL()

);

}

SOL

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Code Style EarlyAdopterPool.sol:L216

The 2592 variable utilized in the userMultiplier calculation within
EarlyAdopterPool::calculateUserPoints should be relocated to a constant variable declaration with
adequate documentation.

As an additional point, the maximum multiplier of 200% may not be achievable during the lifetime of the
EarlyAdopterPool as it represents a length of 10 months . To achieve a better multiplier factor, the actual
duration of the contract's deposit lifetime can be utilized as a divisor of the actual lengthOfDeposit of the
user, ensuring a multiplier result guaranteed to be at most 200_0 and at minimum 100_0 via a Math::max
operation.

src/EarlyAdopterPool.sol

EAP-05C: Insufficient Documentation of Literal

Description:

Impact:

Example:

//Scaled by 1000, therefore, 1005 would be 1.005

uint256 userMultiplier = Math.min(

 2000,

 1000 + ((lengthOfDeposit * 10) / 2592) / 10

);

SOL

213

214

215

216

217

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L204-L225

We advise it to be relocated as such, surrounded by text that clearly denotes it is meant to depict the
duration that elapses to achieve a 10% increase per month (whose duration is simplified to 30 days).

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EarlyAdopterPool.sol:L166, L184, L207, L323

The claimingOpen data point is meant to indicate whether EarlyAdopterPool::claim transactions should
be possible, however, the same "state" can be validated by evaluating whether the value of claimDeadline
is non-zero, a case only satisfied after EarlyAdopterPool::setClaimingOpen has been invoked.

src/EarlyAdopterPool.sol

EAP-06C: Redundant Data Point

Description:

Example:

/// @notice Sets claiming to be open, to allow users to claim their points

/// @param _claimDeadline the amount of time in days until claiming will close

function setClaimingOpen(uint256 _claimDeadline) public onlyOwner {

 claimDeadline = block.timestamp + (_claimDeadline * 86400);

 claimingOpen = 1;

 endTime = block.timestamp;

 emit ClaimingOpened(claimDeadline);

}

SOL

180

181

182

183

184

185

186

187

188

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L165-L178
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L182-L188

We advise this adjustment to be performed, optimizing the code's storage space and gas cost throughout its
functions.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EarlyAdopterPool.sol:L91-L94, L96-L99

The EarlyAdopterPool contract contains its supported deposit tokens in their address format as
immutable variables as well as in their IERC20 format as simple, no-visibility variables.

src/EarlyAdopterPool.sol

EAP-07C: Redundant Duplicate Data Points

Description:

Example:

address private immutable rETH; // 0xae78736Cd615f374D3085123A210448E74Fc6393;

address private immutable wstETH; // 0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0;

address private immutable sfrxETH; // 0xac3e018457b222d93114458476f3e3416abbe38f;

address private immutable cbETH; // 0xBe9895146f7AF43049ca1c1AE358B0541Ea49704;

//Future contract which funds will be sent to on claim (Most likely LP)

address public claimReceiverContract;

//Status of claims, 1 means claiming is open

uint8 public claimingOpen;

//user address => token address = balance

mapping(address => mapping(address => uint256)) public userToErc20Balance;

mapping(address => UserDepositInfo) public depositInfo;

IERC20 rETHInstance;

IERC20 wstETHInstance;

IERC20 sfrxETHInstance;

IERC20 cbETHInstance;

SOL

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the contract to solely retain either the IERC20 or address counterparts of the tokens, casting the
variables to the desirable type (address or IERC20 respectively) as needed. We should note that the
address and IERC20 types are identical at the storage level and can both be set as immutable , they simply
serve as syntactic sugar for the Solidity compiler to expose the relevant methods in the case of an
interface -type.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Code Style EarlyAdopterPool.sol:L117-L120, L283-L287, L307

The referenced statements are redundantly wrapped in parenthesis' (()).

src/EarlyAdopterPool.sol

EAP-08C: Redundant Parenthesis Statements

Description:

Example:

(_erc20Contract == rETH ||

 _erc20Contract == sfrxETH ||

 _erc20Contract == wstETH ||

 _erc20Contract == cbETH),

SOL

117

118

119

120

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise them to be safely omitted, increasing the legibility of the codebase.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EarlyAdopterPool.sol:L96-L99

The linked variables are assigned to only once during the contract's constructor .

src/EarlyAdopterPool.sol

EAP-09C: Variable Mutability Specifiers (Immutable)

Description:

Example:

constructor(

 address _rETH,

 address _wstETH,

 address _sfrxETH,

 address _cbETH

) {

 rETH = _rETH;

 wstETH = _wstETH;

 sfrxETH = _sfrxETH;

 cbETH = _cbETH;

 rETHInstance = IERC20(_rETH);

 wstETHInstance = IERC20(_wstETH);

 sfrxETHInstance = IERC20(_sfrxETH);

 cbETHInstance = IERC20(_cbETH);

}

SOL

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise them to be set as immutable greatly optimizing their read-access gas cost.

The EtherFi team has opted not to remediate any finding in the EarlyAdopterPool implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it
pertains a system component that will not be utilized in the EtherFi system.

Recommendation:

Alleviation:

EtherFiNode Code Style Findings

Type Severity Location

Code Style EtherFiNode.sol:L19, L38, L115

The referenced lines contain typographical mistakes (i.e. private variable without an underscore prefix) or
generic documentational errors (i.e. copy-paste) that should be corrected.

src/EtherFiNode.sol

EFN-01C: Generic Typographic Mistakes

Description:

Example:

VALIDATOR_PHASE public phase;

SOL

19

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise them to be corrected enhancing the legibility of the codebase.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EtherFiNode.sol:L301

The referenced require check is ineffectual as it evaluates that an unsigned integer (penaltyAmount) is
greater-than-or-equal-to the value of 0 which represents a tautology.

src/EtherFiNode.sol

EFN-02C: Ineffectual Conditional Check

Description:

Example:

uint256 penaltyAmount = _principal - remaining;

require(penaltyAmount >= 0, "Incorrect penalty amount");

SOL

300

301

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the require check to either be omitted or instead validate that the penaltyAmount is non-zero,
either of which we consider an adequate resolution to this exhibit.

The ineffectual conditional check has been safely removed from the codebase, optimizing it as a result.

Recommendation:

Alleviation:

Type Severity Location

Language Specific EtherFiNode.sol:L173, L203

The linked mathematical operations are guaranteed to be performed safely by surrounding conditionals
evaluated in either require checks or if-else constructs.

src/EtherFiNode.sol

EFN-03C: Ineffectual Usage of Safe Arithmetics

Description:

Example:

if (_vestedAuctionFee) {

 uint256 rewards = _getClaimableVestedRewards();

 uint256 toTnft = (rewards * 29) / 32;

 tnft += toTnft; // 29 / 32

 bnft += rewards - toTnft; // 3 / 32

}

SOL

169

170

171

172

173

174

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked
statements to be wrapped in unchecked code blocks thereby optimizing their execution cost.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EtherFiNode.sol:L211, L261

The EtherFiNode::getStakingRewardsPayouts and EtherFiNode::getProtocolRewardsPayouts
functions will continue execution even if the rewards to be split are 0 , inefficiently performing multiple
calculations.

src/EtherFiNode.sol

EFN-04C: Inefficient Calculation of Rewards

Description:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L187-L231
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L241-L263

/// @notice get the accrued staking rewards payouts to (toNodeOperator, toTnft, toBnft

/// @param _splits the splits for the staking rewards

/// @param _scale the scale = SUM(_splits)

///

/// @return toNodeOperator the payout to the Node Operator

/// @return toTnft the payout to the T-NFT holder

/// @return toBnft the payout to the B-NFT holder

/// @return toTreasury the payout to the Treasury

function getStakingRewardsPayouts(

 IEtherFiNodesManager.RewardsSplit memory _splits,

 uint256 _scale

)

 public

 view

 onlyEtherFiNodeManagerContract

 returns (

 uint256 toNodeOperator,

 uint256 toTnft,

 uint256 toBnft,

 uint256 toTreasury

)

{

 uint256 balance = address(this).balance;

 uint256 rewards = (balance > vestedAuctionRewards)

 ? balance - vestedAuctionRewards

 : 0;

 if (rewards >= 32 ether) {

 rewards -= 32 ether;

 } else if (rewards >= 8 ether) {

 // In a case of Slashing, without the Oracle, the exact staking rewards cannot

 // Assume no staking rewards in this case.

 rewards = 0;

 }

 (

 uint256 operator,

 uint256 tnft,

 uint256 bnft,

 uint256 treasury

) = calculatePayouts(rewards, _splits, _scale);

 if (exitRequestTimestamp > 0) {

 uint256 daysPassedSinceExitRequest = _getDaysPassedSince(

 exitRequestTimestamp,

 uint32(block.timestamp)

);

if (daysPassedSinceExitRequest >= 14) {

SOL

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

 if (daysPassedSinceExitRequest >= 14) {

 treasury += operator;

 operator = 0;

 }

 }

 return (operator, tnft, bnft, treasury);

}

224

225

226

227

228

229

230

231

We advise the functions to return early if the rewards to be split are 0 , optimizing their execution cost.

While the function returns early in the case of rewards >= 8 ether , the code will still execute if
balance > vestedAuctionRewards when it should return early. As such, we consider this exhibit partially
alleviated.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EtherFiNode.sol:L286

The case whereby a full year has elapsed since the exit request and exit timestamp of a node is inefficiently
handled as the remaining value is set to 0 instead of directly returning the _principal as the penalty
amount.

src/EtherFiNode.sol

EFN-05C: Inefficient Case Handling

Description:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

/// @notice compute the non exit penalty for the b-nft holder

/// @param _principal the principal for the non exit penalty (e.g., 1 ether)

/// @param _dailyPenalty the dailty penalty for the non exit penalty

/// @param _exitTimestamp the exit timestamp for the validator node

function getNonExitPenalty(

 uint128 _principal,

 uint64 _dailyPenalty,

 uint32 _exitTimestamp

) public view onlyEtherFiNodeManagerContract returns (uint256) {

 if (exitRequestTimestamp == 0) {

 return 0;

 }

 uint256 daysElapsed = _getDaysPassedSince(

 exitRequestTimestamp,

 _exitTimestamp

);

 uint256 daysPerWeek = 7;

 uint256 weeksElapsed = daysElapsed / daysPerWeek;

 uint256 remaining = _principal;

 if (daysElapsed > 365) {

 remaining = 0;

 } else {

 for (uint64 i = 0; i < weeksElapsed; i++) {

 remaining =

 (remaining * (100 - _dailyPenalty) ** daysPerWeek) /

 (100 ** daysPerWeek);

 }

 daysElapsed -= weeksElapsed * daysPerWeek;

 for (uint64 i = 0; i < daysElapsed; i++) {

 remaining = (remaining * (100 - _dailyPenalty)) / 100;

 }

 }

 uint256 penaltyAmount = _principal - remaining;

 require(penaltyAmount >= 0, "Incorrect penalty amount");

 return penaltyAmount;

}

SOL

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

We advise a direct return statement of the _principal amount to be performed, optimizing this case's
gas cost.

The _principal value is yielded directly in place of the zero-value assignment per our recommendation,
optimizing the codebase.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EtherFiNode.sol:L288, L295

The EVM is built to operate on 32-byte data types and any operations on types less than that require
additional low-level EVM instructions that increase their gas cost.

src/EtherFiNode.sol

EFN-06C: Inefficient Loop Iterator Data Type

Description:

Example:

for (uint64 i = 0; i < weeksElapsed; i++) {

 remaining =

 (remaining * (100 - _dailyPenalty) ** daysPerWeek) /

 (100 ** daysPerWeek);

}

daysElapsed -= weeksElapsed * daysPerWeek;

for (uint64 i = 0; i < daysElapsed; i++) {

 remaining = (remaining * (100 - _dailyPenalty)) / 100;

}

SOL

288

289

290

291

292

293

294

295

296

297

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Given that the referenced variables are simply iterators, we advise them to be upcast to uint256 variables
thus reducing their gas cost.

The referenced loops are no longer present in the codebase as part of a separate exhibit, rendering this
exhibit no longer applicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EtherFiNode.sol:L288, L295

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe arithmetics
(post- 0.8.X).

src/EtherFiNode.sol

EFN-07C: Loop Iterator Optimizations

Description:

Example:

for (uint64 i = 0; i < weeksElapsed; i++) {

SOL

288

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the increment / decrement operations to be performed in an unchecked code block as the last
statement within each for loop to optimize their execution cost.

The referenced loops are no longer present in the codebase as part of a separate exhibit, rendering this
exhibit no longer applicable.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EtherFiNode.sol:L288-L297

The iterative penalty calculation within EtherFiNode::getNonExitPenalty is inefficient as it will split the
calculations per-week while they can be split per-month safely.

src/EtherFiNode.sol

EFN-08C: Optimization of Penalty Calculation

Description:

Example:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

/// @notice compute the non exit penalty for the b-nft holder

/// @param _principal the principal for the non exit penalty (e.g., 1 ether)

/// @param _dailyPenalty the dailty penalty for the non exit penalty

/// @param _exitTimestamp the exit timestamp for the validator node

function getNonExitPenalty(

 uint128 _principal,

 uint64 _dailyPenalty,

 uint32 _exitTimestamp

) public view onlyEtherFiNodeManagerContract returns (uint256) {

 if (exitRequestTimestamp == 0) {

 return 0;

 }

 uint256 daysElapsed = _getDaysPassedSince(

 exitRequestTimestamp,

 _exitTimestamp

);

 uint256 daysPerWeek = 7;

 uint256 weeksElapsed = daysElapsed / daysPerWeek;

 uint256 remaining = _principal;

 if (daysElapsed > 365) {

 remaining = 0;

 } else {

 for (uint64 i = 0; i < weeksElapsed; i++) {

 remaining =

 (remaining * (100 - _dailyPenalty) ** daysPerWeek) /

 (100 ** daysPerWeek);

 }

 daysElapsed -= weeksElapsed * daysPerWeek;

 for (uint64 i = 0; i < daysElapsed; i++) {

 remaining = (remaining * (100 - _dailyPenalty)) / 100;

 }

 }

 uint256 penaltyAmount = _principal - remaining;

 require(penaltyAmount >= 0, "Incorrect penalty amount");

 return penaltyAmount;

}

SOL

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

A value of 10**75 can safely fit in a uint256 variable, meaning that a calculation of remaining * 10**32
would be safe to perform as long as remaining is less-than-or-equal to 10**43 , presented otherwise as
10**25 units of a typical 1e18 asset.

As such, a daysElapsed value of up to 30 can be immediately utilized in the power-to calculation safely
without requiring any loop. To further optimize the code for durations greater than a month, we advise a
while loop introduced that runs as long as daysElapsed is greater-than 30 . Within it, the remaining
value should be set directly to
(remaining * (100 - _dailyPenalty) ** Math.min(30, daysElapsed)) / (100 ** Math.min(30,
daysElapsed))

. The daysElapsed iterator should be subtracted by the same value (Math.min(30, daysElapsed)),
optimizing the EtherFiNode::getNonExitPenalty function's execution significantly. As an added note, the
(100 - _dailyPenalty) value can be stored to a local variable outside the while loop further optimizing
the code's gas cost.

The penalty calculation has been optimized per our recommendation, significantly reducing the gas cost of
estimating the non-exit penalty. The EtherFi team chose a value of 7 instead of 30 for each loop's
calculation, ensuring a greater degree of safety in the calculations.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

Type Severity Location

Code Style EtherFiNode.sol:L205, L207, L224, L285, L333, L397

The referenced lines indicate numeric constants in use within the EtherFiNode codebase that appear
incorrect and should at minimum be adequately documented.

src/EtherFiNode.sol

EFN-09C: Potentially Incorrect Constants

Description:

Example:

// While the NonExitPenalty keeps growing till 1 ether,

// the incentive to the node operator stops growing at 0.5 ether

// the rest goes to the treasury

if (bnftNonExitPenalty > 0.5 ether) {

 payouts[0] += 0.5 ether;

 payouts[3] += (bnftNonExitPenalty - 0.5 ether);

} else {

 payouts[0] += bnftNonExitPenalty;

}

SOL

394

395

396

397

398

399

400

401

402

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

In sequence, each variable is assumed to:

The second and the first before last entries of this list are incorrect as a slash operation can be of up to the
full amount of a validator and the staking rewards an operator accumulates are uncapped and can exceed
8 ether . For more information, consult the "Weak Validation of Node State" findings in the audit report.

The EtherFi requested additional guidance in relation to this exhibit. We believe that the second and first
before last entries of the list in the exhibit (L207:8 ether and L333:16 ether) are incorrect values.

At minimum, we advise them to be adequately documented and relocated to constant declarations.

Recommendation:

Alleviation:

Type Severity Location

Code Style EtherFiNode.sol:L202, L399

The referenced statements are redundantly wrapped in parenthesis' (()).

src/EtherFiNode.sol

We advise them to be safely omitted, increasing the legibility of the codebase.

While the redundant parenthesis from the second instance have been removed, they remain in the first
instance.

EFN-10C: Redundant Parenthesis Statements

Description:

Example:

uint256 rewards = (balance > vestedAuctionRewards)

SOL

202

Recommendation:

Alleviation:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Type Severity Location

Code Style EtherFiNode.sol:L205, L206, L290, L291, L296, L348, L363, L397, L398,
L399

The linked value literals are repeated across the codebase multiple times.

src/EtherFiNode.sol

We advise each to be set to its dedicated constant variable instead optimizing the legibility of the
codebase.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

EFN-11C: Repetitive Value Literals

Description:

Example:

if (rewards >= 32 ether) {

SOL

205

Recommendation:

Alleviation:

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

EtherFiNodesManager Code Style Findings

Type Severity Location

Code Style EtherFiNodesManager.sol:L98-L104, L112-L118, L277-L280

The linked require checks have no error messages explicitly defined.

src/EtherFiNodesManager.sol

EFM-01C: Inexistent Error Messages

Description:

Example:

require(

 (stakingRewardsSplit.treasury +

 stakingRewardsSplit.nodeOperator +

 stakingRewardsSplit.tnft +

 stakingRewardsSplit.bnft) == SCALE,

 ""

);

SOL

98

99

100

101

102

103

104

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise each to be set so to increase the legibility of the codebase and aid in validating the require
checks' conditions.

Proper error messages have been introduced for all referenced require checks.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization EtherFiNodesManager.sol:L163, L184, L249, L274, L378

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe arithmetics
(post- 0.8.X).

src/EtherFiNodesManager.sol

EFM-02C: Loop Iterator Optimizations

Description:

Example:

for (uint256 i = 0; i < _validatorIds.length; i++) {

SOL

163

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the increment / decrement operations to be performed in an unchecked code block as the last
statement within each for loop to optimize their execution cost.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity EtherFiNodesManager.sol:L45

The referenced __gap variable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of
variables in storage in the overall contract.

src/EtherFiNodesManager.sol

EFM-03C: Non-Standard Gap Size

Description:

Example:

uint256[32] __gap;

SOL

45

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

The methodology employed for calculating the appropriate length for the variable in OpenZeppelin is to
utilize the value of 50 as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. 1 in the case of TNFT). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the length of the gap is directly correlated to the storage layout of the contract
it resides in.

The __gap array's length has been adjusted to a standardized value as advised.

Recommendation:

Alleviation:

Type Severity Location

Code Style EtherFiNodesManager.sol:L99-L102, L113-L116

The referenced statements are redundantly wrapped in parenthesis' (()).

src/EtherFiNodesManager.sol

EFM-04C: Redundant Parenthesis Statements

Description:

Example:

(stakingRewardsSplit.treasury +

 stakingRewardsSplit.nodeOperator +

 stakingRewardsSplit.tnft +

 stakingRewardsSplit.bnft) == SCALE,

SOL

99

100

101

102

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise them to be safely omitted, increasing the legibility of the codebase.

Both redundant parenthesis have been removed from the codebase as advised.

Recommendation:

Alleviation:

Type Severity Location

Code Style EtherFiNodesManager.sol:L200, L282

The linked value literal is repeated across the codebase multiple times.

src/EtherFiNodesManager.sol

EFM-05C: Repetitive Value Literal

Description:

Example:

balance < 8 ether,

SOL

200

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

NodeOperatorManager Code Style Findings

Type Severity Location

Gas Optimization NodeOperatorManager.sol:L44, L53-L54, L65, L67, L71, L72,
L106, L107

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

src/NodeOperatorManager.sol

NOM-01C: Inefficient mapping Lookups

Description:

Example:

/// @notice Fetches the next key they have available to use

/// @param _user the user to fetch the key for

/// @return the ipfs index available for the validator

function fetchNextKeyIndex(

 address _user

) external onlyAuctionManagerContract returns (uint64) {

 uint64 totalKeys = addressToOperatorData[_user].totalKeys;

 require(

 addressToOperatorData[_user].keysUsed < totalKeys,

 "Insufficient public keys"

);

 uint64 ipfsIndex = addressToOperatorData[_user].keysUsed;

 addressToOperatorData[_user].keysUsed++;

 return ipfsIndex;

}

SOL

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

All referenced mapping lookups have been optimized as advised.

Recommendation:

Alleviation:

ProtocolRevenueManager Code Style Findings

Type Severity Location

Standard Conformity ProtocolRevenueManager.sol:L33

The referenced __gap variable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of
variables in storage in the overall contract.

src/ProtocolRevenueManager.sol

PRM-01C: Non-Standard Gap Size

Description:

Example:

uint256[32] __gap;

SOL

33

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

The methodology employed for calculating the appropriate length for the variable in OpenZeppelin is to
utilize the value of 50 as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. 1 in the case of TNFT). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the length of the gap is directly correlated to the storage layout of the contract
it resides in.

The __gap array's length has been adjusted to a standardized value as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization ProtocolRevenueManager.sol:L174-L178

The ProtocolRevenueManager::getAccruedAuctionRevenueRewards function's code block is relatively
inefficient in its return mechanism.

src/ProtocolRevenueManager.sol

PRM-02C: Optimization of Code Block

Description:

Example:

/// @notice Compute the accrued rewards for a validator

/// @param _validatorId id of the validator

function getAccruedAuctionRevenueRewards(

 uint256 _validatorId

) public view returns (uint256) {

 address etherFiNode = etherFiNodesManager.etherfiNodeAddress(

 _validatorId

);

 uint256 localRevenueIndex = IEtherFiNode(etherFiNode)

 .localRevenueIndex();

 uint256 amount = 0;

 if (localRevenueIndex > 0) {

 amount = globalRevenueIndex - localRevenueIndex;

 }

 return amount;

}

SOL

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L166-L179

We advise the code to immediately yield 0 if localRevenueIndex is 0 and to yield the
globalRevenueIndex - localRevenueIndex calculation in any other case, rendering the local amount
variable redundant and optimizing the code's legibility.

The code was partially optimized to the version we advised, rendering this exhibit partially alleviated.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization ProtocolRevenueManager.sol:L63, L68

The referenced getter function is invoked twice in the same function context.

src/ProtocolRevenueManager.sol

PRM-03C: Repetitive Invocation of Getter Function

Description:

Example:

/// @notice All of the received Ether is shared to all validators! Cool!

receive() external payable {

 require(

 etherFiNodesManager.numberOfValidators() > 0,

 "No Active Validator"

);

 globalRevenueIndex +=

 msg.value /

 etherFiNodesManager.numberOfValidators();

}

SOL

60

61

62

63

64

65

66

67

68

69

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise it to be invoked once, stored to a local variable, and consequently utilized for the two referenced
instances thus optimizing the code's gas cost.

The referenced getter function is now invoked only once and stored to a local variable as advised.

Recommendation:

Alleviation:

Type Severity Location

Code Style ProtocolRevenueManager.sol:L86

The linked value literal is repeated across the codebase multiple times.

src/ProtocolRevenueManager.sol

PRM-04C: Repetitive Value Literal

Description:

Example:

msg.value) / 100;

SOL

86

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

ScoreManager Code Style Findings

Type Severity Location

Code Style ScoreManager.sol:L40

The referenced line contains a typographical mistake (i.e. private variable without an underscore prefix) or
generic documentational error (i.e. copy-paste) that should be corrected.

src/ScoreManager.sol

SMR-01C: Generic Typographic Mistake

Description:

Example:

event NewTypeAdded(uint256 Id, bytes ScoreType);

SOL

40

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise this to be done so to enhance the legibility of the codebase.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Type Severity Location

Language Specific ScoreManager.sol:L96

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals
evaluated in either require checks or if-else constructs.

src/ScoreManager.sol

SMR-02C: Ineffectual Usage of Safe Arithmetics

Description:

Example:

numberOfTypes++;

return numberOfTypes - 1;

SOL

95

96

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked
statement to be wrapped in an unchecked code block thereby optimizing its execution cost.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity ScoreManager.sol:L33

The referenced __gap variable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of
variables in storage in the overall contract.

src/ScoreManager.sol

SMR-03C: Non-Standard Gap Size

Description:

Example:

uint256[32] __gap;

SOL

33

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

The methodology employed for calculating the appropriate length for the variable in OpenZeppelin is to
utilize the value of 50 as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. 1 in the case of TNFT). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the length of the gap is directly correlated to the storage layout of the contract
it resides in.

The __gap array's length has been adjusted to a standardized value as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization ScoreManager.sol:L90, L91, L93, L95, L96

The referenced instructions all read the numberOfTypes variable from the contract's storage instead of
storing it to a local variable for all consequent utilizations.

src/ScoreManager.sol

SMR-04C: Redundant Storage Reads

Description:

Example:

/// @notice creates a new type of score

/// @param _type the bytes value type being added

function addNewScoreType(bytes memory _type) external onlyOwner returns (uint256) {

 scoreTypes[numberOfTypes] = _type;

 typeIds[_type] = numberOfTypes;

 emit NewTypeAdded(numberOfTypes, _type);

 numberOfTypes++;

 return numberOfTypes - 1;

}

SOL

87

88

89

90

91

92

93

94

95

96

97

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the numberOfTypes variable to be read once at the beginning of the
ScoreManager::addNewScoreType function and stored to a local numberOfTypes_ variable that is
consequently utilized in all referenced statements, significantly optimizing the gas cost of the function.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L89-L97

StakingManager Code Style Findings

Type Severity Location

Code Style StakingManager.sol:L217

The linked require check has no error message explicitly defined.

src/StakingManager.sol

SME-01C: Inexistent Error Message

Description:

Example:

require(bidIdToStaker[_validatorId] == address(0), "");

SOL

217

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

We advise one to be set so to increase the legibility of the codebase and aid in validating the require
check's condition.

An explicit error message was introduced to the referenced require check as advised.

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization StakingManager.sol:L120, L181

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe arithmetics
(post- 0.8.X).

src/StakingManager.sol

SME-02C: Loop Iterator Optimizations

Description:

Example:

++i

SOL

120

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

We advise the increment / decrement operations to be performed in an unchecked code block as the last
statement within each for loop to optimize their execution cost.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity StakingManager.sol:L47

The referenced __gap variable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of
variables in storage in the overall contract.

src/StakingManager.sol

SME-03C: Non-Standard Gap Size

Description:

Example:

uint256[32] __gap;

SOL

47

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

The methodology employed for calculating the appropriate length for the variable in OpenZeppelin is to
utilize the value of 50 as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. 1 in the case of TNFT). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the length of the gap is directly correlated to the storage layout of the contract
it resides in.

The __gap array's length has been adjusted to a standardized value as advised.

Recommendation:

Alleviation:

TNFT Code Style Findings

Type Severity Location

Standard Conformity TNFT.sol:L13

The referenced __gap variable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of
variables in storage in the overall contract.

src/TNFT.sol

TNF-01C: Non-Standard Gap Size

Description:

Example:

uint256[32] __gap;

SOL

13

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

The methodology employed for calculating the appropriate length for the variable in OpenZeppelin is to
utilize the value of 50 as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. 1 in the case of TNFT). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the length of the gap is directly correlated to the storage layout of the contract
it resides in.

The __gap array's length has been adjusted to a standardized value as advised.

Recommendation:

Alleviation:

Treasury Code Style Findings

Type Severity Location

Gas Optimization Treasury.sol:L16

The Treasury::withdraw function will fail if the _amount specified exceeds the contract's balance (
address(this).balance) as the call instruction would fail.

src/Treasury.sol

TYR-01C: Redundant Evaluation of Balance

Description:

Example:

/// @notice Function allows only the owner to withdraw all the funds in the contract

function withdraw(uint256 _amount, address _to) external onlyOwner {

 require(

 _amount <= address(this).balance,

 "the balance is lower than the requested amount"

);

 require(_to != address(0), "null address is not allowed");

 (bool sent,) = payable(_to).call{value: _amount}("");

 require(sent, "Failed to send Ether");

}

SOL

13

14

15

16

17

18

19

20

21

22

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/Treasury.sol#L14-L22

We advise the require check to be omitted, optimizing the function's execution cost. Alternatively, if
verbose error messages are desirable the check should remain.

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the
codebase, instead acknowledging it.

Recommendation:

Alleviation:

Finding Types

A description of each finding type included in the report can be found below and is linked by each
respective finding. A full list of finding types Omniscia has defined will be viewable at the central audit
methodology we will publish soon.

Many contracts that interact with DeFi contain a set of complex external call executions that need to happen
in a particular sequence and whose execution is usually taken for granted whereby it is not always the case.
External calls should always be validated, either in the form of require checks imposed at the contract-level
or via more intricate mechanisms such as invoking an external getter-variable and ensuring that it has been
properly updated.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should always be in
place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either due to mistyped
code, convoluted if blocks, overlapping functions / variable names and other ambiguous statements.

Language specific issues arise from certain peculiarities that the Solidity language boasts that discerns it
from other conventional programming languages. For example, the EVM is a 256-bit machine meaning that
operations on less-than-256-bit types are more costly for the EVM in terms of gas costs, meaning that loops
utilizing a uint8 variable because their limit will never exceed the 8-bit range actually cost more than
redundantly using a uint256 variable.

An official Solidity style guide exists that is constantly under development and is adjusted on each new
Solidity release, designating how the overall look and feel of a codebase should be. In these types of
findings, we identify whether a project conforms to a particular naming convention and whether that
convention is consistent within the codebase and legible. In case of inconsistencies, we point them out under
this category. Additionally, variable shadowing falls under this category as well which is identified when a

External Call Validation

Input Sanitization

Indeterminate Code

Language Specific

Code Style

g y y g g y

local-level variable contains the same name as a contract-level variable that is present in the inheritance
chain of the local execution level's context.

Gas optimization findings relate to ways the codebase can be optimized to reduce the gas cost involved with
interacting with it to various degrees. These types of findings are completely optional and are pointed out
for the benefit of the project's developers.

These types of findings relate to incompatibility between a particular standard's implementation and the
project's implementation, oftentimes causing significant issues in the usability of the contracts.

In Solidity, math generally behaves differently than other programming languages due to the constraints of
the EVM. A prime example of this difference is the truncation of values during a division which in turn leads
to loss of precision and can cause systems to behave incorrectly when dealing with percentages and
proportion calculations.

This category is a bit broad and is meant to cover implementations that contain flaws in the way they are
implemented, either due to unimplemented functionality, unaccounted-for edge cases or similar
extraordinary scenarios.

This category covers all findings that relate to a significant degree of centralization present in the project and
as such the potential of a Single-Point-of-Failure (SPoF) for the project that we urge them to re-consider and
potentially omit.

This category relates to findings that arise from re-entrant external calls (such as EIP-721 minting operations)
and revolve around the inapplicacy of the Checks-Effects-Interactions (CEI) pattern, a pattern that dictates
checks (require statements etc.) should occur before effects (local storage updates) and interactions
(external calls) should be performed last.

Gas Optimization

Standard Conformity

Mathematical Operations

Logical Fault

Centralization Concern

Reentrant Call

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary / public / private)
and is in effect for all past, current, and future audit reports that are produced and hosted under Omniscia:

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and highlight
any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the codebase that
were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This makes them
extremely volatile assets. Any assessment report obtained on such volatile and nascent assets may include
unpredictable results which may lead to positive or negative outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security review does not
constitute endorsement, agreement or acceptance for the Project and technology that was reviewed. Users
relying on this security review should not consider this as having any merit for financial advice or
technological due diligence in any shape, form or nature.

The veracity and accuracy of the findings presented in this report relate solely to the proficiency,
competence, aptitude and discretion of our auditors. Omniscia and its employees make no guarantees, nor
assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation of technologies or any
system / economical / mathematical malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on any
objective, goal or justification without due written assent, acquiescence or approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or investment
advice, nor should it be used to signal that any person reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report.

Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness, accuracy or
solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack vectors/surface and the high
level of variance associated with utilizing new and consistently changing technologies.

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY
AUDITS/REVIEWS/REPORTS AND ALL PUBLIC/PRIVATE
CONTENT/DELIVERABLES

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the
technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the design/creation of this
security review be ever liable to any parties for, or lack thereof, decisions and/or actions with regards to the
information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not
standardized, highly prone to malfunction and extremely speculative by nature. No due diligence and/or
safeguards may be insufficient and users should exercise maximum caution when participating and/or
investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and actionable
recommendations to the Project team (the “client”) with respect to the rectification, amendment and/or
revision of any highlighted issues, vulnerabilities or exploits within the contracts in scope for this
engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform the necessary
checks to ensure that the contracts are functioning as intended, and more specifically to ensure that the
functions contained within the contracts in scope have the desired intended effects, functionalities and
outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any other materials,
products or results of this security review engagement is provided "as is" and "as available" and with all
faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of content,
suggestions, materials or for any loss, delay, damage of any kind which arose as a result of this
engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of any kind
whatsoever that resulted in this engagement and the customer having access to or use of the products,
engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any associated
services or materials, shall not be considered or relied upon as any form of financial, investment, tax, legal,
regulatory, or any other type of advice.

