May 16, 2023

SMART CONTRACT
AUDIT REPORT

EtherFi ETH2.0
Staking

L omniscia.io

] info@omniscia.io

Online report: etherfi-eth-2.0-staking

'» OMNISCIA

mailto:info@omniscia.io
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5

ETH 2.0 Staking Security Audit

Audit Overview

We were tasked with performing an audit of the EtherFi codebase and in particular their novel ETH2.0
staking mechanism that matches node operators and potential fund providers using a bidding system along

with a customized reward distribution model for each node that makes use of NFTs.

Over the course of the audit, we identified multiple errors of significant severity the most crucial of which
arise from the Beacon chain deposit mechanism and its susceptibility to a front-run attack with different

withdrawal credentials.

We advise the EtherFi team to closely evaluate all minor-and-above findings identified in the report and

promptly remediate them as well as consider all optimizational exhibits identified in the report.

Post-Audit Conclusion

The EtherFi team iterated through all findings within the report and provided us with a revised commit hash

to evaluate all exhibits on.

We evaluated all alleviations performed by EtherFi and have identified that certain exhibits have not been
adequately dealt with. We advise the EtherFi team to revisit the following exhibits: SME-04M, EFM-05M, EFN-
05M

Additionally, we advise these informational / static analysis exhibits to be re-visited as they have been
remediated either partially or improperly: EFM-01S, TYR-01C, SMR-01C, SMR-04C, SMR-02C, EFN-01C, EFN-
11C, EFN-04C, EFN-10C, EFN-03C, EFN-09C, PRM-02C, PRM-04C, CRP-02C, AMR-01C, AMR-03C, AMR-02C,
EFM-02C, EFM-05C, SME-02C

Contracts Assessed

Files in Scope

AuctionManager.sol (AMR)

BNFT.sol (BNF)

ClaimReceiverPool.sol (CRP)

EtherFiNode.sol (EFN)

EarlyAdopterPool.sol (EAP)

EtherFiNodesManager.sol (EFM)

NodeOperatorManager.sol (NOM)

ProtocolRevenueManager.sol (PRM)

ScoreManager.sol (SMR)

StakingManager.sol (SME)

TNFT.sol (TNF)

Treasury.sol (TYR)

UUPSProxy.sol (UUP)

Repository

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

dappContracts

Commit(s)

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

0f9df283aa,
3a52fa3a5d

Audit Synopsis

Severity Identified Alleviated Partially Alleviated Acknowledged
@ unknown 6 6 0 0
@ nformational 73 53 7 13
22 22 0 0
@ Medium 2 2 0 0
@ VMoajor 11 8 0 3

During the audit, we filtered and validated a total of 27 findings utilizing static analysis tools as well as
identified a total of 87 findings during the manual review of the codebase. We strongly recommend that
any minor severity or higher findings are dealt with promptly prior to the project's launch as they can

introduce potential misbehaviours of the system as well as exploits.

Compilation

The project utilizes as its development pipeline tool, containing an array of tests and scripts coded

in TypeScript.

To compile the project, the command needs to be issued via the CLI tool to (e

npx hardhat compile

The tool automatically selects Solidity version based on the version specified within the

hardhat.config.ts Rl

The project contains discrepancies with regards to the Solidity version used as the statements of the
contracts are open-ended ((EICIEE)-

We advise them to be locked to EIEEE)). the same version utilized for our static analysis as well

as optimizational review of the codebase.

During compilation with the pipeline, no errors were identified that relate to the syntax or

bytecode size of the contracts.

Static Analysis

The execution of our static analysis toolkit identified 386 potential issues within the codebase of which 325

were ruled out to be false positives or negligible findings.

The remaining 61 issues were validated and grouped and formalized into the 27 exhibits that follow:

ID Severity Addressed Title

AMR-01S @ nformational @ ves Inexistent Event Emissions

AMR-02S @ Informational @ ves Inexistent Visibility Specifier

AMR-03S @ Informational @ Ves Literal Equality of Variables
AMR-04S @ ves Inexistent Sanitization of Input Addresses
BNF-01S @ nformational @ ves Inexistent Visibility Specifier

BNF-02S @ ves Inexistent Sanitization of Input Address
CRP-01S @ nformational @ ves lllegible Numeric Value Representation
CRP-02S @ (nformational @ ves Inexistent Visibility Specifiers

CRP-03S @ ves Inexistent Sanitization of Input Addresses
EAP-01S @ Informational @ Nulliified lllegible Numeric Value Representations
EAP-02S ® Nullified Inexistent Sanitization of Input Addresses
EAP-03S ® Nuliified Potential Lock of Native Assets

e @ Viedium ® Nulified Improper Invocations of EIP-20 /

transferFrom

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/AuctionManager-AMR#AMR-04S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/BNFT-BNF#BNF-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/BNFT-BNF#BNF-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ClaimReceiverPool-CRP#CRP-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ClaimReceiverPool-CRP#CRP-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ClaimReceiverPool-CRP#CRP-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EarlyAdopterPool-EAP#EAP-04S

ID

EFN-01S

EFN-02S

EFM-01S

EFM-02S

EFM-03S

NOM-01S

NOM-02S

PRM-01S

PRM-02S

SMR-01S

SME-01S

SME-02S

TNF-01S

TNF-02S

Severity

@ nformational

Minor

@ nformational

@ nformational

Minor

@ nformational

Minor

@ nformational

Minor

@ nformational

@ nformational

Minor

@ nformational

Minor

Addressed

& ves

@ ves

O Fartial

@ ves

& ves

@ ves

@ ves

@ ves

& ves

@ ves

@ ves

@ ves

& ves

@ ves

Title

lllegible Numeric Value Representation

Inexistent Sanitization of Input Address

lllegible Numeric Value Representations

Inexistent Visibility Specifier

Inexistent Sanitization of Input Addresses

Literal Equality of Variable

Inexistent Sanitization of Input Address

Inexistent Visibility Specifier

Inexistent Sanitization of Input Addresses

Inexistent Visibility Specifier

Inexistent Visibility Specifier

Inexistent Sanitization of Input Addresses

Inexistent Visibility Specifier

Inexistent Sanitization of Input Address

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNode-EFN#EFN-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNode-EFN#EFN-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNodesManager-EFM#EFM-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNodesManager-EFM#EFM-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/EtherFiNodesManager-EFM#EFM-03S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/NodeOperatorManager-NOM#NOM-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/NodeOperatorManager-NOM#NOM-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ProtocolRevenueManager-PRM#PRM-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ProtocolRevenueManager-PRM#PRM-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/ScoreManager-SMR#SMR-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/StakingManager-SME#SME-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/StakingManager-SME#SME-02S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/TNFT-TNF#TNF-01S
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/static-analysis/TNFT-TNF#TNF-02S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and

vulnerabilities in EtherFi's ETH2.0 staking system.

As the project at hand implements a novel ETH2.0 node operation system, intricate care was put into
ensuring that the flow of funds within the system conforms to the specifications and restrictions laid

forth within the protocol's specification.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary
formulas within the system execute as expected. We pinpointed multiple high-severity vulnerabilities
within the system which could have had severe ramifications to its overall operation the most crucial of
which revolved around the notion of withdrawal credentials and how they can be manipulated to point to a

different address than the one EtherFi expects.

Additionally, the system was investigated for any other commonly present attack vectors such as re-entrancy
attacks, mathematical truncations, logical flaws and ERC / EIP standard inconsistencies. The documentation
of the project was satisfactory to a certain extent, however, we strongly recommend it to be expanded at

certain complex points such as the multi-branch fund distribution mechanism in

EtherFiNode: :getFullWithdrawalPayouts [ISICEHINEINACINERICIEIS

A total of 87 findings were identified over the course of the manual review of which 40 findings concerned
the behaviour and security of the system. The non-security related findings, such as optimizations, are

included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

AMR-01M @ Uunknown @ ves Inexplicable Capability of Re-Invocation
AMR-02M @ Informational @ ves Inexistent Disable of Initializer
AMR-03M @ Informational @ ves Insufficient Validation of Bid Size
AMR-04M @ ves Improper Entry Clean-Up

AMR-05M @ ves Insufficient Validation of Minimum Bid Amount

https://eips.ethereum.org/
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/AuctionManager-AMR#AMR-05M

ID

BNF-01M

BNF-02M

CRP-01M

CRP-02M

CRP-03M

CRP-04M

EAP-01M

EAP-02M

EAP-03M

EAP-04M

EAP-O5M

EFN-01M

EFN-02M

EFN-03M

EFN-04M

EFN-O5M

Severity

@ nformational

@ Major

@ nformational

@ Major

@ Major

@ Major

@ unknown

@ unknown

Minor

Minor

Minor

@ nformational

Minor

Minor

@ Major

@ Major

Addressed

@ ves

@ ves

@ ves

@ ves

® Nuliified

@ ves

® Nuliified

® Nuliified

® Nuliified

@® Nuliified

® Nuliified

@ ves

@ ves

@ ves

@ ves

Title

Inexistent Disable of Initializer

Incorrect Override of Functionality

Inexistent Disable of Initializer

Inexistent Slippage Protection

Inexplicable Deposit Flow

Unsupported Withdrawal Mechanism

Improper Accuracy of Point Calculations

Pure Off-Chain Point Utilization

Inexistent Prevention of Re-Invocation

Potentially Redundant Amount Restriction

Unfair Reset of Deposit Time

Inexistent Disable of Initializer

Incorrect Balance Assumption

Inexistent Sanitization of Exit Timestamp

Inexistent Caller Validation

Weak Validation of Node State

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/BNFT-BNF#BNF-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/BNFT-BNF#BNF-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ClaimReceiverPool-CRP#CRP-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EarlyAdopterPool-EAP#EAP-05M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNode-EFN#EFN-05M

ID

EFM-01M

EFM-02M

EFM-03M

EFM-04M

EFM-05M

NOM-01M

NOM-02M

PRM-01M

PRM-02M

PRM-03M

SMR-01M

SMR-02M

SMR-03M

SMR-04M

SME-01M

SME-02M

Severity

@ nformational

Minor

Minor

@ Major

@ Major

@ unknown

@ Major

@ unknown

@ nformational

Minor

@ nformational

@ nformational

Minor

@ Medium

@ unknown

@ nformational

Addressed

@ ves

@® Nuliified

@ ves

@ ves

@ ves

® Nuliified

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

@ ves

Title

Inexistent Disable of Initializer

Inexistent Prevention of Duplicate Exit

Inexistent Sanitization of Non-Exit Penalty Rate

Inexistent Validation of Node State

Weak Validation of Node State

Inexplicable Capability of Re-Invocation

Incorrect Verification of Whitelist

Inexplicable Capability of Re-Invocation

Inexistent Disable of Initializer

Inexistent Sanitization of Fee Proportion

Inexistent Disable of Initializer

Inexplicable Data Types

Inexistent Sanitization of Valid Type

Improper Score Maintenance Mechanisms

Inexplicable Capability of Re-Invocation

Inexistent Disable of Initializer

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/EtherFiNodesManager-EFM#EFM-05M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/NodeOperatorManager-NOM#NOM-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/NodeOperatorManager-NOM#NOM-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ProtocolRevenueManager-PRM#PRM-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ProtocolRevenueManager-PRM#PRM-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ProtocolRevenueManager-PRM#PRM-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-02M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/ScoreManager-SMR#SMR-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-01M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-02M

ID Severity Addressed Title

SME-03M @ Major @ Nuliified Incorrect Data Entry
SME-04M @ Maijor Q No Validator Front-Run Withdrawal

Credential Attack

TNF-01M @ 'nformational @ ves Inexistent Disable of Initializer

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-03M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/StakingManager-SME#SME-04M
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/manual-review/TNFT-TNF#TNF-01M

Code Style

During the manual portion of the audit, we identified 47 optimizations that can be applied to the codebase
that will decrease the operational cost associated with the execution of a particular function and generally

ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should

make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

AMR-01C @ nformational O Fartial Inefficient Optimization of Iterator Increment
AMR-02C @ Informational O Partial Inefficient Lookups

AMR-03C @ Informational Loop Iterator Optimization

AMR-04C @ nformational @ ves Non-Standard Gap Size

AMR-05C) e e @ vos E(e)crllijrr;cllant Duplicate Application of Access
BNF-01C @ nformational @ ves Non-Standard Gap Size

CRP-01C @ nformational @ ves Duplicate Invocation of Getter

CRP-02C @ nformational O Fartial Inexistent Gap Declaration

EAP-01C @ nformational ® Nuliified Code Readability Enhancement

EAP-02C @ Informational @ Nullified Generic Typographic Mistakes

EAP-03C @ nformational @ Nullified Inefficient Contract TVL Calculation

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/AuctionManager-AMR#AMR-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/BNFT-BNF#BNF-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ClaimReceiverPool-CRP#CRP-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ClaimReceiverPool-CRP#CRP-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-03C

ID

EAP-04C

EAP-05C

EAP-06C

EAP-07C

EAP-08C

EAP-09C

EFN-01C

EFN-02C

EFN-03C

EFN-04C

EFN-05C

EFN-06C

EFN-07C

EFN-08C

EFN-09C

EFN-10C

Severity

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

Addressed

® Nullified

@® Nullified

@® Nuliified

® Nuliified

® Nullified

@® Nullified

@ ves

O rartial

@ ves

@® Nullified

@® Nuliified

@ ves

Q No

O rartial

Title

Inefficient Lookups

Insufficient Documentation of Literal

Redundant Data Point

Redundant Duplicate Data Points

Redundant Parenthesis Statements

Variable Mutability Specifiers (Immutable)

Generic Typographic Mistakes

Ineffectual Conditional Check

Ineffectual Usage of Safe Arithmetics

Inefficient Calculation of Rewards

Inefficient Case Handling

Inefficient Loop Iterator Data Type

Loop Iterator Optimizations

Optimization of Penalty Calculation

Potentially Incorrect Constants

Redundant Parenthesis Statements

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-06C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-07C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-08C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EarlyAdopterPool-EAP#EAP-09C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-06C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-07C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-08C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-09C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-10C

ID

EFN-11C

EFM-01C

EFM-02C

EFM-03C

EFM-04C

EFM-05C

NOM-01C

PRM-01C

PRM-02C

PRM-03C

PRM-04C

SMR-01C

SMR-02C

SMR-03C

SMR-04C

SME-01C

Severity

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

Addressed

@ ves

@ ves

@ ves

@ ves

@ ves

O rartial

@ ves

@ ves

@ ves

Title

Repetitive Value Literals

Inexistent Error Messages

Loop Iterator Optimizations

Non-Standard Gap Size

Redundant Parenthesis Statements

Repetitive Value Literal

Inefficient Lookups

Non-Standard Gap Size

Optimization of Code Block

Repetitive Invocation of Getter Function

Repetitive Value Literal

Generic Typographic Mistake

Ineffectual Usage of Safe Arithmetics

Non-Standard Gap Size

Redundant Storage Reads

Inexistent Error Message

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNode-EFN#EFN-11C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/EtherFiNodesManager-EFM#EFM-05C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/NodeOperatorManager-NOM#NOM-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ProtocolRevenueManager-PRM#PRM-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/ScoreManager-SMR#SMR-04C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/StakingManager-SME#SME-01C

ID

SME-02C

SME-03C

TNF-01C

TYR-01C

Severity

@ nformational

@ nformational

@ nformational

@ nformational

Addressed

@ ves

@ ves

Title

Loop Iterator Optimizations

Non-Standard Gap Size

Non-Standard Gap Size

Redundant Evaluation of Balance

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/StakingManager-SME#SME-02C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/StakingManager-SME#SME-03C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/TNFT-TNF#TNF-01C
https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/code-style/Treasury-TYR#TYR-01C

AuctionManager Static Analysis Findings

AMR-01S: Inexistent Event Emissions

Type Severity Location
Language Specific AuctionManager.sol:L221-L223, L227-1L229
Description:

The linked functions adjust sensitive contract variables yet do not emit an event for it.

Example:

src/AuctionManager.sol

SOL

function disableWhitelist () public onlyOwner {

whitelistEnabled = false;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Recommendation:

We advise an to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.

Alleviation:

Two events have been introduced to the codebase each signalling the whitelist's enabled and disabled state

respectively, alleviating this exhibit.

AMR-02S: Inexistent Visibility Specifier

Type Severity Location
Code Style AuctionManager.sol:L39
Description:

The linked variable has no visibility specifier explicitly set.

Example:

src/AuctionManager.sol

SOL

uint256[32] _ gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

A JSUSEBRd visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context

we advise the variable to be set as instead of as a matter of optimization.

AMR-03S: Literal Equality of Variables

Type Severity Location
Gas Optimization AuctionManager.sol:L89, L100, L168, L202
Description:

The linked comparisons are performed between variables and literals.

Example:

src/AuctionManager.so

SOL

nodeOperatorManagerInterface.isWhitelisted (msg.sender) == true,

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise each variable to be utilized directly either in its negated () or original form.

Alleviation:

All referenced equality comparisons of (el variables have been optimized to utilize each variable's

value directly as advised.

AMR-04S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization AuctionManager.sol:L60-L77, L285-L291, L295-1L299
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/AuctionManager.sol

SOL

function initialize(
address nodeOperatorManagerContract
) external initializer ({
whitelistBidAmount = 0.001 ether;
minBidAmount = 0.01 ether;
maxBidAmount = 5 ether;
numberOfBids = 1;
whitelistEnabled = true;

nodeOperatorManagerInterface = INodeOperatorManager (
_nodeOperatorManagerContract

)2

___Pausable init();

_Ownable init();

___UUPSUpgradeable init () ;

_ReentrancyGuard init();

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

All referenced instances of [EREkEgEag arguments are properly sanitized via checks ensuring they are

non-zero, fully alleviating this exhibit.

BNFT Static Analysis Findings

BNF-01S: Inexistent Visibility Specifier

Type Severity Location
Code Style BNFT.sol:L14
Description:

The linked variable has no visibility specifier explicitly set.

Example:

src/BNFT.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

A JSUSEBRd visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context

we advise the variable to be set as instead of as a matter of optimization.

BNF-02S: Inexistent Sanitization of Input Address

Type Severity Location
Input Sanitization BNFT.sol:L20-L26
Description:

The linked function accepts an argument yet does not properly sanitize it.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract

to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src¢/BNFT.sol

SOL

function initialize (address stakingManagerAddress) initializer external {

_ERC721 init ("Bond NFT", "BNET");

_Ownable init();

___UUPSUpgradeable init () ;

stakingManagerAddress = stakingManagerAddress;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that the specified is non-zero.

Alleviation:

The referenced instance of an argument is properly sanitized via a check ensuring that it

is non-zero, fully alleviating this exhibit.

ClaimReceiverPool Static Analysis Findings

CRP-01S: lllegible Numeric Value Representation

Type Severity Location
Code Style ClaimReceiverPool.sol:L31
Description:

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the

codebase.

Example:

src/ClaimReceiverPool.sol

SOL

uint24 public constant poolFee = 3000;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

To properly illustrate the value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of {8, we advise fractions to be utilized directly (i.e. becomes
) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore () separator to discern the percentage decimal (i.e. becomes [EREIEE)

becomes and so on). Finally, for large numeric values we simply advise the underscore character to be

utilized again to represent them (i.e. ERelsJoleole} becomes EREICIIIle)).

Alleviation:

The underscore separator has been properly introduced to the referenced value, optimizing its legibility.

CRP-02S: Inexistent Visibility Specifiers

Type Severity Location
Code Style ClaimReceiverPool.sol:L49-L50, L53-L54
Description:

The linked variables have no visibility specifier explicitly set.

Example:

src/ClaimReceiverPool.sol

SOL

ISwapRouter constant router =
(0xE592427A0AECce92De3EdeelF18E0157C05861564) ;

ISwapRouter

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise them to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between versions.
Alleviation:

All referenced variables have had a visibility specifier set, alleviating this exhibit in full.

CRP-03S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization ClaimReceiverPool.sol:L72-L90
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/ClaimReceiverPool.sol

SOL

function initialize (
address rEth,
_wstEth,

__CbEth,
addr __scoreManager
external initializer {
rETH = rEth;
wstETH = wstEth;
sfrxETH = sfrxEth;
CbETH = cbEth;

scoreManager = IScoreManager (_scoreManager) ;

_Pausable init();

_Ownable init();

___UUPSUpgradeable init();

_ReentrancyGuard init();

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

All referenced instances of [EREkEgEag arguments are properly sanitized via checks ensuring they are

non-zero, fully alleviating this exhibit.

EarlyAdopterPool Static Analysis Findings

EAP-01S: lllegible Numeric Value Representations

Type Severity Location

Code Style EarlyAdopterPool.sol:L183, L215-L216

Description:

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the

codebase.

Example:

src/EarlyAdopterPool.sol

SOL

claimDeadline = block.timestamp + (claimDeadline * 86400);

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

To properly illustrate each value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of {8, we advise fractions to be utilized directly (i.e. becomes
) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore () separator to discern the percentage decimal (i.e. becomes [EREIEE)

becomes and so on). Finally, for large numeric values we simply advise the underscore character to be

utilized again to represent them (i.e. ERelsJoleole} becomes EREICIIIle)).

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-02S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization EarlyAdopterPool.sol:L85-L100
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/EarlyAdopterPool.sol

SOL

constructor
_rETH,
ac _WstETH,
address sfrxETH,
address cbETH

rETH = rETH;
wstETH = wstETH;
sfrxETH = sfrxETH;
cbETH = CcbETH;

rETHInstance = IERC20(rETH);
wstETHInstance = IERC20(wstETH);

sfrxETHInstance = IERC20(sfrxETH);
cbETHInstance = IERC20(cbETH) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-03S: Potential Lock of Native Assets

Type Severity Location
Language Specific EarlyAdopterPool.sol:L74
Description:

The linked (oaEhey / function performs no sanitization as to its caller and no function within the

contract expects funds to have been received directly by the contract.

Impact:

Any native funds accidentally sent to the contract may be forever locked.

Example:

src/EarlyAdopterPool.sol

SOL

receive () external payable {}

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Recommendation:

We advise the code to properly prohibit accidental native assets from being permanently locked in the
contract by introducing a check restricting the to the contract(s) expected to transfer
assets to the system (i.e. in case of a wrapped native version of an asset, only the contract address
should be allowed). Alternatively, if the contract is not expected to receive native assets directly the function

should be removed in its entirety.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-04S: Improper Invocations of EIP-20 /

Type Severity Location
Standard Conformity EarlyAdopterPool.sol:L127, L268-L271
Description:

The linked statements do not properly validate the returned values of the EIP-20 standard
& functions. As the standard dictates, callers must not assume that is never

returned.

Impact:

If the code mandates that the returned is [@ang this will cause incompatibility with tokens such as
USDT / Tether as no such is returned to be evaluated causing the check to fail at all times. On the other
hand, if the token utilized can return a [fRag value under certain conditions but the code does not validate

it, the contract itself can be compromised as having received / sent funds that it never did.

Example:

src/EarlyAdopterPool.sol

SOL

require (IERC20 (_erc20Contract) .transferFrom(msg.sender, address(this), amount), "Trar

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20#token

Recommendation:

Since not all standardized tokens are EIP-20 compliant (such as Tether / USDT), we advise a safe wrapper
library to be utilized instead such as by OpenZeppelin to opportunistically validate the returned
only if it exists in each instance.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

https://eips.ethereum.org/EIPS/eip-20

EtherFiNode Static Analysis Findings

EFN-01S: lllegible Numeric Value Representation

Type Severity Location
Code Style EtherFiNode.sol:L436
Description:

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the

codebase.

Example:

src/EtherFiNode.sol

SOL

return uint256 (timekElapsed / (24 * 3600));

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

To properly illustrate the value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of {8, we advise fractions to be utilized directly (i.e. becomes
) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore () separator to discern the percentage decimal (i.e. becomes [EREIEE)

becomes and so on). Finally, for large numeric values we simply advise the underscore character to be

utilized again to represent them (i.e. ERelsJoleole} becomes EREICIIIle)).

Alleviation:

The underscore separator has been properly introduced to the referenced value, optimizing its legibility.

EFN-02S: Inexistent Sanitization of Input Address

Type Severity Location
Input Sanitization EtherFiNode.sol:L25-L29
Description:

The linked function accepts an argument yet does not properly sanitize it.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract

to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/EtherFiNode.sol

SOL

tion initialize (address etherFiNodesManager) public {

require (stakingStartTimestamp == 0, "already initialised");
stakingStartTimestamp = uint32 (block.timestamp) ;

etherFiNodesManager = etherFiNodesManager;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that the specified is non-zero.

Alleviation:

The referenced instance of an argument is properly sanitized via a check ensuring that it

is non-zero, fully alleviating this exhibit.

EtherFiNodesManager Static Analysis Findings

EFM-01S: lllegible Numeric Value Representations

Type Severity Location

Code Style EtherFiNodesManager.sol:L77, L93-L96, L107-L110

Description:

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the

codebase.

Example:

src/EtherFiNodesManager.sol

SOL

SCALE = 1000000;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

To properly illustrate each value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of {8, we advise fractions to be utilized directly (i.e. becomes
) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore () separator to discern the percentage decimal (i.e. becomes [EREIEE)

becomes and so on). Finally, for large numeric values we simply advise the underscore character to be

utilized again to represent them (i.e. ERelsJoleole} becomes EREICIIIle)).

Alleviation:

While the underscore character has been introduced to all referenced variables, it has been done so using
conventional numbers rather than percentage-based values. We advise literals such as il meant to

represent [ERELEER), to be written as better illustrating their purpose.

EFM-02S: Inexistent Visibility Specifier

Type Severity Location
Code Style EtherFiNodesManager.sol:L45
Description:

The linked variable has no visibility specifier explicitly set.

Example:

src/EtherFiNodesManager.sol

SOL

uint256[32] _ gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

A JSUSEBRd visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context

we advise the variable to be set as instead of as a matter of optimization.

EFM-03S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization EtherFiNodesManager.sol:L63-L119
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract

to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/EtherFiNodesManager.sol
SOL
function initialize(

s _treasuryContract,

s _auctionContract,

address stakingManagerContract,

s _tnftContract,
s _bnftContract,
5 _protocolRevenueManagerContract

initializer {

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

All referenced instances of [EREkEgEag arguments are properly sanitized via checks ensuring they are

non-zero, fully alleviating this exhibit.

NodeOperatorManager Static Analysis Findings

NOM-01S: Literal Equality of Variable

Type Severity Location
Gas Optimization NodeOperatorManager.sol:L42
Description:

The linked comparison is performed between a variable and a literal.

Example:

src/NodeOperatorManager.sol

SOL

require (registered[msg.sender] == false, "Already registered");

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the variable to be utilized directly either in its negated ({ff) or original form.

Alleviation:

The referenced equality comparison of a variable has been optimized to utilize the variable's

value directly as advised.

NOM-02S: Inexistent Sanitization of Input Address

Type Severity Location
Input Sanitization NodeOperatorManager.sol:L127-L131
Description:

The linked function accepts an argument yet does not properly sanitize it.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract

to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/NodeOperatorManager.sol

SOL

function setAuctionContractAddress (

address auctionContractAddress

) public onlyOwner ({

auctionManagerContractAddress = auctionContractAddress;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that the specified is non-zero.

Alleviation:

The referenced instance of an argument is properly sanitized via a check ensuring that it

is non-zero, fully alleviating this exhibit.

ProtocolRevenueManager Static Analysis Findings

PRM-01S: Inexistent Visibility Specifier

Type Severity Location
Code Style ProtocolRevenueManager.sol:L33
Description:

The linked variable has no visibility specifier explicitly set.

Example:

src/ProtocolRevenueManager.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

A JSUSEBRd visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context

we advise the variable to be set as instead of as a matter of optimization.

PRM-02S: Inexistent Sanitization of Input Addresses

Type Severity Location
Input Sanitization ProtocolRevenueManager.sol:L121-L125, L130-L134
Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract

to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/ProtocolRevenueManager.sol

SOL

function setEtherFiNodesManagerAddress (
address _etherFiNodesManager

) external onlyOwner {

etherFiNodesManager = IEtherFiNodesManager (etherFiNodesManager) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

All referenced instances of [ERkEREag arguments are properly sanitized via checks ensuring they are

non-zero, fully alleviating this exhibit.

ScoreManager Static Analysis Findings

SMR-01S: Inexistent Visibility Specifier
Type Severity Location

Code Style ScoreManager.sol:L33

Description:

The linked variable has no visibility specifier explicitly set.

Example:

src/ScoreManager.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

A JSUSEBRd visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context

we advise the variable to be set as instead of as a matter of optimization.

StakingManager Static Analysis Findings

SME-01S: Inexistent Visibility Specifier
Type Severity Location

Code Style StakingManager.sol:L47

Description:

The linked variable has no visibility specifier explicitly set.

Example:

src/StakingManager.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

A JSUSEBRd visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context

we advise the variable to be set as instead of as a matter of optimization.

SME-02S: Inexistent Sanitization of Input Addresses
Type Severity Location

StakingManager.sol:L76-L90, L223-1229, L239-1244, L246-L248,

Input Sanitization L250-1252

Description:

The linked function(s) accept arguments yet do not properly sanitize them.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src/StakingManager.sol

SOL

function initialize (address auctionAddress) external initializer ({

stakeAmount = 32 ether;

maxBatchDepositSize = 16;

___Pausable init();

__ Ownable init();

___UUPSUpgradeable init () ;

__ReentrancyGuard init();

auctionInterfacelInstance = IAuctionManager (auctionAddress);

depositContractEth2 = IDepositContract (
0xff50ed3d0ec03aC01D4C79aAd74928BFF48a7b2b

) i

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that each specified is non-zero.

Alleviation:

All referenced instances of [ERkEREag arguments are properly sanitized via checks ensuring they are

non-zero, fully alleviating this exhibit.

TNFT Static Analysis Findings

TNF-01S: Inexistent Visibility Specifier

Type Severity Location
Code Style TNFT.sol:L13
Description:

The linked variable has no visibility specifier explicitly set.

Example:

src¢/TNFT.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation:

A JSUSEBRd visibility specifier has been introduced for the referenced member of the contract, addressing this
exhibit. Given that the member represents a variable that serves no purpose outside of the contract's context

we advise the variable to be set as instead of as a matter of optimization.

TNF-02S: Inexistent Sanitization of Input Address

Type Severity Location
Input Sanitization TNFT.sol:L19-L25
Description:

The linked function accepts an argument yet does not properly sanitize it.

Impact:

The presence of zero-value addresses, especially in implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of

off-chain software related bugs.

Example:

src¢/TNFT.sol

SOL

s _stakingManagerAddress) initializer external {

_ERC721 init("Transferrable NFT", "TNEFT");

_Ownable init();

___UUPSUpgradeable init () ;

stakingManagerAddress = stakingManagerAddress;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization

Recommendation:

We advise some basic sanitization to be put in place by ensuring that the specified is non-zero.

Alleviation:

The referenced instance of an argument is properly sanitized via a check ensuring that it

is non-zero, fully alleviating this exhibit.

AuctionManager Manual Review Findings

AMR-01M: Inexplicable Capability of Re-Invocation

Type Severity Location
Centralization Concern AuctionManager.sol:L285-L291, L295-L299
Description:

Ilils) AuctionManager: : setProtocolRevenueManager o4
AuctionManager: : setStakingManagerContractAddress pernﬂtthe protocolRevenueManager [
SRV SR le UENEY Ltaololetba-YalXolsbaXF] \/ariables respectively to be set after the contract's initialization due to

circular dependencies, however, each function can be invoked an arbitrary number of times.

Example:

src/AuctionManager.sol

SOL

function setProtocolRevenueManager (
address protocolRevenueManager
) external onlyOwner ({
protocolRevenueManager = IProtocolRevenueManager (
_protocolRevenueManager

) ¢

function setStakingManagerContractAddress (
addr _stakingManagerContractAddress

) external onlyOwner ({

stakingManagerContractAddress = stakingManagerContractAddress;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L285-L291
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L295-L299

Recommendation:

As both the JacIHeI AR INVEIEleital 3. IV ERNINCELta coNntracts represent an upgradeable module, we

advise the referenced functions to be invoke-able only once.

Alleviation:

All referenced functions have had checks introduced that ensure they cannot be re-invoked

beyond their initialization, alleviating this exhibit's concerns fully.

AMR-02M: Inexistent Disable of Initializer

Type Severity Location
Standard Conformity AuctionManager.sol:L60-L77
Description:

The contract is meant to be an upgradeable contract that is initialized via the

pULTERIAVELEX VSRR REREURR LY fUNCtion, however, the base implementation of EXIICIERSINENEYI¥al iS NOt

disabling the initializer during its construction.

Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/AuctionManager.sol

SOL

on initialize (

addr _nodeOperatorManagerContract
) external initializer {

whitelistBidAmount = 0.001 ether;
minBidAmount 0.01 ether;
maxBidAmount 5 ether;
numberOfBids = 1;
whitelistEnabled = true;

nodeOperatorManagerInterface = INodeOperatorManager (
_nodeOperatorManagerContract

) ¢

___Pausable init();

___Ownable init();

___UUPSUpgradeable init();

__ReentrancyGuard init();

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L60-L77

Recommendation:

We advise a to be introduced to [[ANERINIEHELEE] (hat executes
Tnitializable:: disableInitializers RSANUEIIeRGEIRGCNENRInTIEINERIEIelsNell 2 it i onManager

cannot be initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

AMR-03M: Insufficient Validation of Bid Size

Type Severity Location
Input Sanitization AuctionManager.sol:L121
Description:

FELEAINER call is insufficiently sanitized as it is

The the user specifies for an [TaaRSa T T

permitted to be @ causing the function to "succeed" as a no-op.

Impact:

While the is not sanitized adequately, no vulnerability arises from this behaviour and as such the

finding has been classified as "informational”.

Example:

src/AuctionManager.sol
SOL
uint64 keysRemaining = nodeOperatorManagerInterface.getNumKeysRemaining (

msg.sender

) g

require (bidSize <= keysRemaining, "Insufficient public keys");

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L83-L155

Recommendation:

We advise the referenced check to ensure that is a non-zero number, guaranteeing that

an EASTERIAICLET EERRFPEEEN-ER] execution will be accompanied by at least one bid creation.

Alleviation:

A BIepERY check was adequately introduced to the EXMIISRINIELEY LR FRFSLEAINERN function ensuring that

the is non-zero and thus preventing no-op [RTaataa i T T s transactions from

successfully executing.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L83-L155
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L83-L155
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L83-L155

AMR-04M: Improper Entry Clean-Up

Type Severity Location
Logical Fault AuctionManager.sol:L166-L183
Description:

The pETERINTELEr P FRYFELLINR:3R: function will incorrectly clean up the data entries associated with a

particular bid ID as it will only set its status to (RS

Impact:

Apart from not properly deleting the bid entries, the code also decrements the after
the external distribution of funds to the has been performed. As a result, if the

SRV R ¥ VET e PR ERFel o oI SR RAERAN IR M BY function is invoked during this time the code will insufficiently

sanitize the number of bids that are attempted to be made.

Example:

src/AuctionManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L95-L144

function cancelBid(uint256 bidId) public whenNotPaused ({

require (bids[bidId] .bidderAddress == msg.sender, "Invalid bid");

require (bids[bidId].isActive == true, "Bid already cancelled");

bids[bidId].isActive = false;

uint256 bidValue = bids[bidId].amount;

(bool sent,) = msg.sender.call{value: bidvalue} ("");

require (sent, "Failed to send Ether");

numberOfActiveBids—--—;

emit BidCancelled(bidId) ;

Recommendation:

We advise the code to delete the bid entirely (i.c. (i TIaIR I IMIEe) after the has been

extracted and to also decrement the before the funds are distributed to the
ensuring that the code conforms to the Checks-Effects-Interactions pattern and that the bid is

properly removed from the system.

Alleviation:

The value is properly decremented prior to the disbursement of funds to the
preventing the contract from having an interim corrupt state and thus conforming to the CEl

pattern.

AMR-05M: Insufficient Validation of Minimum Bid Amount

Type Severity Location
Input Sanitization AuctionManager.sol:L304
Description:

PRI e unction will permit a new to be set, however, the
validation it performs does not include the EisERSSERFS:ERINBER \vhich must be less-than the newly set

minBidAmount §

Ilil5] AuctionManager:

Impact:

It is possible to misconfigure the contract and have a whitelist bid amount that is greater-than the current

minimum bid amount, eliminating the benefits of whitelisted bids.

Example:

src/AuctionManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L303-L306

function setMinBidPrice (uint64 newMinBidAmount) external onlyOwner ({
require (newMinBidAmount < maxBidAmount, "Min bid exceeds max bid");

minBidAmount = newMinBidAmount;

function setMaxBidPrice (uint64 newMaxBidAmount) external onlyOwner {
require (newMaxBidAmount > minBidAmount, "Min bid exceeds max bid");

maxBidAmount = newMaxBidAmount;

function updateWhitelistMinBidAmount (
uintl28 newAmount
) external onlyOwner {

require (_newAmount < minBidAmount && newAmount > 0, "Invalid Amount");

whitelistBidAmount = newAmount;

Recommendation:

We advise the check referenced to be updated, ensuring that is greater-than

the curren (EERESERTERTRN
Alleviation:

The pEIERSINTEL Y R FREPNRVERN:3R123XIY function was properly updated to ensure that the
is greater-than the upholding the contract's guarantee that a

whitelist bid amount is less than the minimum permitted for a regular bid.

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L303-L306

BNFT Manual Review Findings

BNF-01M: Inexistent Disable of Initializer

Type Severity Location

Standard Conformity @ nformational BNFT.sol:L20-L26

Description:

The contract is meant to be an upgradeable contract that is initialized via the (SR ERELERIEIEET
function, however, the base implementation of is not disabling the initializer during its construction.
Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/BNFT.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L20-L26

contract BNFT is ERC721Upgradeable, UUPSUpgradeable, OwnableUpgradeable ({

addre public stakingManagerAddress;

uint256[32] gap;

function initialize (address _stakingManagerAddress) initializer external ({

__ERC721 init ("Bond NEFT", "BNET");

__Ownable init();

___UUPSUpgradeable init();

stakingManagerAddress = stakingManagerAddress;

Recommendation:

We advise a to be introduced to ENtaM that executes

NSRS AR R-TENNCER-LI RS SRR ERERAYE] <N suUring that the base implementation of Nl cannot be

initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

BNF-02M: Incorrect Override of Functionality

Type Severity Location
Logical Fault @ Major BNFT.sol:L36-L44
Description:

The Bz dRRE e function is meant to disallow any transfers to occur unless they are

part of operations, however, the methodology applied solely overrides the

N lW IRV I st LV AR R RS-t Fagaen] (UNCtion and does not affect other functions, such as

ERC721Upgradeable: :safeTransferFrom|

Impact:

:safeTransferFrom Qail I REERLE

The asset is presently transferrable via the [CREIRI I T E I IT

contract incorrectly overrides only the piiiERESPUREELRIZILY function.

Example:

src/BNFT.sol

SOL

function mint (address reciever, uint256 validatorId) external onlyStakingManager {

_safeMint (_reciever, validatorId);

function transferFrom (
addre
addre

uint256 tokenId

) public virtual override (ERC721Upgradeable) {
"Err: token is SOUL BOUND") ;

super.transferFrom(from, to, tokenId);

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L37-L44
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L32-L34
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/BNFT.sol#L37-L44

Recommendation:

We advise the [HlHPARN st CEIARFENN LI UMbt rEaSa hOOk tO be overridden instead, allowing it to

be invoked solely when and thus capturing all types of "transfer" cases that the

ERC721Upgradeable il implement.
Alleviation:

The contract now properly overrides the jBeHEERIoesaYs CETIR-EINE TS e ta I IV UBLTEEA¥al fLUNCtiON, ensuring

its transfer restrictions are applied in all types of transfers performed by the EIP-20 asset.

https://eips.ethereum.org/EIPS/eip-20

ClaimReceiverPool Manual Review Findings

CRP-01M: Inexistent Disable of Initializer

Type Severity Location
Standard Conformity @ nformational ClaimReceiverPool.sol:L72-L90
Description:

The contract is meant to be an upgradeable contract that is initialized via the

TR EIERNS SIS RRER ERELREEY fUnCtion, however, the base implementation of [GACERNEISEERZN=IICN | S

not disabling the initializer during its construction.

Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/ClaimReceiverPool.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L72-L90

function initialize(
addre _rEth,
addre _wstEth,
address sfrxEth,
addre __CbEth,
address scoreManager
) external initializer {
rETH = rEth;
wstETH = wstEth;
sfrxETH = sfrxEth;

COETH = _cbEth;

scoreManager = IScoreManager (_scoreManager) ;

__Pausable init();
___Ownable init();

___UUPSUpgradeable init();

__ReentrancyGuard init();

Recommendation:

We advise a to be introduced to ML IR IS that executes

Tnitializable:: disableInitializers RSASUSIeRGEIRINNoENRIgsTollIaslINEIdlelaRelll C 12 i mReceiverPool

cannot be initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

CRP-02M: Inexistent Slippage Protection

Type Severity Location
Logical Fault @ Major ClaimReceiverPool.sol:L247-1L248
Description:

The [AEERNTNEERESS LN BERITEY S 3 YT 81 L ERNaRY fUNCtion that is extensively in use by the

function performs an on-chain Uniswap V3 swap without specifying any
form of slippage protection, rendering each user's deposits fully susceptible to slippage attacks.

Impact:

Whenever a user wishes to deposit the funds they had staked in the early adopter pool, all their non-native
assets will be fully susceptible to on-chain sandwich attacks that would greatly impact the end-result of their

deposit to the protocol.

Example:

src/ClaimReceiverPool.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L233-L252
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L105-L155

function swapExactInputSingle (

uint256 amountlIn,

addre __tokenIn

) internal returns (uint256 amountOut) {

IERC20 (_tokenIn) .approve (address (router),

ISwapRouter.ExactInputSingleParams memory

.ExactInputSingleParams ({
tokenIn: tokenln,
tokenOut: wEth,

fee: poolFee,

recipient: address (this),
deadline: block.timestamp,
amountIn: amountlIn,

0,

sgrtPricelLimitX96: 0

amountOutMinimum:

1) ;

amountOut =

_amountIn);

params = ISwapRouter

router.exactInputSingle (params) ;

Recommendation:

As the user's assets are swapped directly and are the only assets affected by the slippage, we advise the

function to accept an array of arguments that indicate what slippage should
be applied on each asset, permitting the users to control the amount they will ultimately deposit to the

system.

To note, this feature would need to be accompanied by a fully-fledged front-end that enables the user to

specify these slippage levels properly akin to other DeFi protocols.

Alleviation:

The [HEFRI:TEERENS LIS BRI SRR flow was adjusted per our recommendation, accepting slippage

arguments in the form of basis points for each of the swaps to be performed and thus alleviating this exhibit.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L105-L155
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ClaimReceiverPool.sol#L105-L155

CRP-03M: Inexplicable Deposit Flow

Type Severity Location
Logical Fault @ Major ClaimReceiverPool.sol:L105-L155
Description:

The deposit flow of the appears to contradict the (R IRIREISIIIT M implementation

as the implementation was meant to point to the contract and transfer all the user's
funds directly to it.

Impact:

INRUEN a1 yAdopterPool Bl implementations are incompatible, the
R a2 would transfer user funds to the and the users would not be able

to access / claim them as part of their deposit.

Example:

src/ClaimReceiverPool.sol

SOL

on swapERC20ForETH (addr _token, uint256 amount) internal returns (uint256)

if (_amount == 0) {

return 0;
}
IERC20 (_token) .safeTransferFrom(msg.sender, address(this), _amount);
uint256 amountOut = swapExactInputSingle(amount, token);
wethContract.withdraw (amountOut) ;

return amountOut;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault

Recommendation:

We advise the to be revised, relying on the [CIEEE Rt T R e arguments
that are verified by the Merkle Proof and not transferring any assets of the user via / the
call's as these assets would have already been automatically deposited by the

EarlyAdopterPool §

Alleviation:

The EtherFi team evaluated this exhibit and has decided to proceed with a different deposit flow rendering
the implementation's data points unusable. As such, we consider this exhibit nullified as

it is no longer relevant.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L105-L155

CRP-04M: Unsupported Withdrawal Mechanism

Type Severity Location
Logical Fault @ Major ClaimReceiverPool.sol:L229
Description:

The [T L N S R o SR s kes] function will attempt to unwrap the asset the contract
has received via the function, however, such an operation will fail as the

ClaimReceiverPool [l RNOMIENCEN function declared.

Impact:

The is presently incapable of adequately unwrapping the assets it receives from an EIP-

20 to juskeel swap, rendering the contract's conversion code inoperable.

Example:

src/ClaimReceiverPool.sol

SOL

function swapERC20ForETH (address token, uint256 amount) internal returns (uint256)

if (_amount == 0) {

return 0;
}
IERC20 (_token) .safeTransferFrom(msg.sender, address(this), amount);
uint256 amountOut = swapExactInputSingle(amount, token);
wethContract.withdraw (amountOut) ;

return amountOut;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ClaimReceiverPool.sol#L223-L231
https://eips.ethereum.org/EIPS/eip-20

Recommendation:

We advise a function to be declared that ensures its is the (SN IET I address,

permitting the asset to be properly unwrapped post-swap.

Alleviation:

A function was properly introduced to the contract ensuring that it can successfully receive native

funds as part of its operation.

EarlyAdopterPool Manual Review Findings

EAP-01M: Improper Accuracy of Point Calculations

Type Severity Location

Mathematical Operations EarlyAdopterPool.sol:L224

Description:

The pERSE IS ITIIYIRRIEULRNELN LIPS SIRAXY function will yield a value whose accuracy is inflated as the

decimal normalization performed at the end is incorrect.

Impact:

The severity of this exhibit will be adjusted depending on the desirable accuracy of points by the EtherFi

team.

Example:

src/EarlyAdopterPool.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#mathematical-operations
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L204-L225

function calculateUserPoints (address user) public view returns (uint256) {

uint256 lengthOfDeposit;

if (claimingOpen == 0) {

lengthOfDeposit = block.timestamp - depositInfo[user].depositTime;
} else {

lengthOfDeposit = endTime - depositInfo[user].depositTime;

uint256 userMultiplier = Math.min (
2000,
1000 + ((lengthOfDeposit * 10) / 2592) / 10
) 7
uint256 totalUserBalance = depositInfo[user].etherBalance +

depositInfo[user].totalERC20Balance;

return
((Math.sgrt (totalUserBalance) * lengthOfDeposit) *
userMultiplier) / leld;

Recommendation:

In detail, if the "points” of a user are desired to be in "per-second” accuracy this is not presently achieved by
the contract. The contract should perform a division by (to normalize the (RIS EEERS)) and

another division by ([or (LY to normalize the (TRl IET

Presently, the contract performs a division by that causes the final point result to have an accuracy of

which is arbitrary. We advise the code to be corrected and the accuracy of

EarlyAdopterPool: :calculateUserPoints [ielel-Re[ETs\WRelolaVaal-Tal(=Ie R

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L204-L225

EAP-02M: Pure Off-Chain Point Utilization

Type Severity Location
Centralization Concern EarlyAdopterPool.sol:L174, L177
Description:

The "points" a user collects as their deposit remains in the pERSRZNISNSASaLIIIN contract are utilized solely in
an off-chain manner as they are emitted in the event and are not utilized anywhere else.

Example:

src/EarlyAdopterPool.sol

SOL

function claim() public nonReentrant {
require (claimingOpen == 1, "Claiming not open");
require (
claimReceiverContract != address(0),
"Claiming address not set"
) ;

require (block.timestamp <= claimDeadline, "Claiming is

require (depositInfo[msg.sender] .depositTime != 0, "No deposit stored");

uint256 pointsRewarded = calculateUserPoints (msg.sender) ;

transferFunds (1) ;

emit Fundsclaimed (msg.sender, pointsRewarded) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern

Recommendation:

We advise the utilization of points to be revisited, potentially enforcing an integration between

and for this particular pool only as presently it is difficult to ascertain
whether the points gathered in the have been properly replayed in the

contract.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-03M: Inexistent Prevention of Re-Invocation

Type Severity Location
Logical Fault EarlyAdopterPool.sol:L180-L188
Description:

The pEPSRR G SIS VI RBEINTA R LRt 0} I3 fuNnction can be invoked multiple times at will, resetting the

as well as the incorrectly on each invocation and significantly affecting the point

calculations.

Impact:

A re-invocation of JoEEIRZ-NIS TS LTI BRI IAEEL ERY0)¥3] \vil| cause points reported by
ELIRY I SINS LTI RRFIEERY t0 become inflated and causing the "total" points of the pool to also be
miscalculated.

Example:

src/EarlyAdopterPool.sol

SOL

function setClaimingOpen (uint256 claimDeadline) public onlyOwner {

claimDeadline = block.timestamp + (claimDeadline * 86400);
claimingOpen = 1;

endTime = block.timestamp;

emit ClaimingOpened(claimDeadline) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L182-L188
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L182-L188
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L165-L178

Recommendation:

We advise the function to be invoke-able only once, ensuring that a non-zero [JSAEEEEEYAERNN has also

been specified during the call.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-04M: Potentially Redundant Amount Restriction

Type Severity Location
Logical Fault EarlyAdopterPool.sol:L112, L144
Description:

The pERSE.GISIII LIS RBYS MR LIFTXIT LA Modifier is meant to prevent deposits that do not fall within

the [INEESAd and EHIESENSa bounds, however, the check is applied to the per-deposit amount rather
PP P P

than the total amount of a user.

Impact:

The limitation of an call can be bypassed by performing multiple deposits

thus defeating its purpose.

Example:

src/EarlyAdopterPool.sol

SOL

modifier OnlyCorrectAmount (uint256 amount) ({

require (

_amount >= 0.1 ether && amount <= 100 ether,

"Incorrect Deposit Amount"

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L314-L320
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138

Recommendation:

We advise the modifier's purpose to be revisited and it to potentially factor in the existing deposit of a user
as it is possible to exceed the mark by depositing the same asset multiple times with
per deposit.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-05M: Unfair Reset of Deposit Time

Type Severity Location
Logical Fault EarlyAdopterPool.sol:L124, L148
Description:

IhE) EarlyAdopterPool : :deposit [Elilel EarlyAdopterPool : : depositEther RiUllaile s R NV ol E1Ia\VAT-H IR sl:]

global of the user that applies to all assets deposited to the pool.

Impact:

The system presently favours single-asset deposits over multi-asset deposits as the latter will suffer "loss-of-

time" between deposits.

Example:

src/EarlyAdopterPool.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L141-L153

function deposit (address erc20Contract, uint256 amount)
external

OnlyCorrectAmount (_amount)

DepositingOpen

whenNotPaused
{

require (

(_erc20Contract == rETH ||
_erc20Contract == sfrxETH ||
_erc20Contract == wstETH ||
_erc20Contract == cbETH),

"Unsupported token"
) i

depositInfo[msg.sender] .depositTime = block.timestamp;
depositInfo[msg.sender].totalERC20Balance += amount;
userToErc20Balance[msg.sender] [erc20Contract] += amount;

require (IERC20 (_erc20Contract) .transferFrom(msg.sender, address(this), amount),

emit DepositERC20 (msg.sender, amount);

emit ERC20TVLUpdated (
rETHInstance.balanceOf (address (this)),
wstETHInstance.balanceOf (address (this)),
sfrxETHInstance.balanceOf (address (this)),
cbETHInstance.balanceOf (address (this)),
address (this) .balance,

getContractTVL ()

function depositEther ()
external
payable
OnlyCorrectAmount (msg.value)
DepositingOpen

whenNotPaused

depositInfo[msg.sender] .depositTime = block.timestamp;

depositInfo[msg.sender] .etherBalance += msg.value;

R T L T e S S B . T

v

emit EthTVLUpdated (address (this) .balance, getContractTVL())

Recommendation:

We advise the code to either retain a per asset, or to expose a single function via which all
relevant assets can be deposited in a single call. In the present implementation, if a user wishes to deposit
multiple assets the time elapsed between each deposit will be "lost" as the will only be reset

to the latest deposit's timestamp.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EtherFiNode Manual Review Findings

EFN-01M: Inexistent Disable of Initializer

Type Severity Location
Standard Conformity EtherFiNode.sol:L25-L29
Description:

The pASNISEACILEEREREREERRRTY fuNnction is meant to be invoked once during the contract's lifetime,
however, the base implementation of ElaNSTEReey does not initialize itself.
Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/EtherFiNode.sol

SOL

function initialize (address etherFiNodesManager) public {

require (stakingStartTimestamp == 0, "already initialised");
stakingStartTimestamp = uint32 (block.timestamp) ;

etherFiNodesManager = etherFiNodesManager;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L25-L29

Recommendation:

We advise a to be introduced to that sets the [T SR LRI R E s to the
maximum of (eI o)), disabling the base implementation of the

contract.

Alleviation:

The contract has had a introduced that initializes the contract in the custom way we described

in our recommendation, alleviating this exhibit in full.

EFN-02M: Incorrect Balance Assumption

Type Severity Location
Logical Fault EtherFiNode.sol:L333, L340-L341, L379
Description:

The IR T N BL RIS calculations assume that the in the function is at
minimum equal to due to the check validating that the balance of the contract is
greater-than-or-equal () to (iIRaNEg however, the actual in use by the code is less than that

as the vested auction rewards are subtracted if they cannot be claimed.

Impact:

As the vested auction fee is not accounted for in the calculations, the principal distribution may be

performed with an incorrect assumption of at least in the contract.

Example:

src/EtherFiNode.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L317-L411

require (

address (this) .balance >= 16 ether,
"not enough balance for full withdrawal"
)
require (
phase == VALIDATOR PHASE.EXITED,
"validator node is not exited"

) ;

uint256 balance = address(this) .balance -
(vestedAuctionRewards - getClaimableVestedRewards())
uint256[] memory payouts = new uint256[] (4);

if (balance > 32 ether) {

(
payouts

4

payouts

14

[0]
payouts|[1],
[2]
payouts [3]
) = getRewardsPayouts (

true,

false,

true,

_splits,

_scale,

_splits,

_scale
)

balance = 32 ether;

uint256 toBnftPrincipal;
uint256 toTnftPrincipal;
1if (balance > 31.5 ether) {

toBnftPrincipal = balance - 30 ether;
} else 1if (balance > 26 ether) {

toBnftPrincipal = 1.5 ether;
} else if (balance > 25.5 ether) {

T~ o~ T~ Y= - - .1 s~ -~ 41 LT T

toBnftPrincipal = 1 ether;

Recommendation:

We advise the code to evaluate the actual as being greater-than-or-equal-to [l anes

Alternatively, we advise the other balance-related findings of this audit report to be assimilated to the code

rendering balance evaluations no longer necessary.

Alleviation:

The actual post-claimable reward is now utilized in the check ensuring that at least
are present in the contract, alleviating this exhibit as a result.

EFN-03M: Inexistent Sanitization of Exit Timestamp

Type Severity Location
Input Sanitization EtherFiNode.sol:L62-L67
Description:

The [N ook e function does not sanitize the the node allegedly exited

at, permitting it to be misconfigured and cause the contract to underflow in certain operations and

potentially lock funds.

Impact:

A misconfigured exit timestamp coupled with an exit request can cause the contract to underflow in

AP T RS I (SN AR RS 2N BRI Which is utilized when computing the rewards of a full withdrawal,

causing the node's funds to be permanently locked within it.

Example:

src/EtherFiNode.sol

SOL

function markExited (
uint32 exitTimestamp

) external onlyEtherFiNodeManagerContract {
phase = VALIDATOR PHASE.EXITED;

exitTimestamp = exitTimestamp;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L62-L67
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

Recommendation:

We advise the IESRUEREEIEN t0 be validated as greater-than the ERERAEISRUERISRENe] o5 \Well as ess-

than the current indicating that the exit has already been performed and that it was
properly performed after it was requested (if requested at all).
Alleviation:

The exit timestamp is properly sanitized as a time in the past, preventing the contract's exit from being

misconfigured.

EFN-04M: Inexistent Caller Validation

Type Severity Location
Logical Fault @ Major EtherFiNode.sol:L81-L85
Description:

The PR3N S AT ERRY SINLELANL N BT E RS NP URSLEENERY function is meant to be invoked by the
ey however, the system does not validate its caller permitting the
to be set to [§J even when they have not been distributed.

Impact:

It is presently possible to eliminate any vested auction rewards by invoking the

100 Y RN (oY RIS P YT YTA YL NG . LT L RS VYN L Ra Y b=V EWN fUNCtion before the fee has been distributed via

EtherFiNodesManager§

Example:

src/EtherFiNode.sol
SOL

function processVestedAuctionFeeWithdrawal () external {

if (_getClaimableVestedRewards () > 0) {

vestedAuctionRewards = 0;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L81-L85
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L81-L85

Recommendation:

We advise proper access control to be imposed on this function, ensuring that the vested auction rewards

cannot be permanently locked in the instance.

Alleviation:

The PSS AT ERRFINEL 3 RS FANT BIEL Bl IS ARENAS modifier has been properly introduced to the

referenced function, ensuring that it is solely called as part of the withdrawal processes in

EtherFiNodesManagerj

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/EtherFiNode.sol#L473-L479

EFN-05M: Weak Validation of Node State

Type Severity Location
Language Specific @ Major EtherFiNode.sol:L207, L333, L348
Description:

The and values are utilized throughout the EtherFi codebase to represent the base stake
value of an node and a number up to which staking rewards can safely accumulate to prior

to being withdrawn and distributed to the various users of an EtherFi node respectively.

As the system evaluates whether a node has "exited", has been "slashed", or has accrued normal staking
rewards using a balance-based measurement, it is possible to influence a node's state via direct transfers. As
an example, you can force a node to exit by directly transferring aCEaEiNels CH LN ICRENN: It A S (O it, a
significantly undesirable trait. Additionally, there is no inherent limitation to the staking rewards a node may

acquire and as such, a node that has been inactive for a significant period of time can exceed this number.

Impact:

It is currently possible to "lock up" rewards of any node until it has been exited at a cost of

DRSS N (T I ERE TSI ISt ¥a Dcr node. This opens up an easy-to-access denial-of-service attack that

renders all nodes of the EtherFi ecosystem susceptible to outside influence.

Example:

src/EtherFiNode.sol

SOL

if (rewards >= 32 ether) {

rewards —-= 32 ether;

} else 1if (rewards >= 8 ether) {

rewards = 0;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Recommendation:

We advise the overall flow of EtherFi to be revised to instead rely on a consistent node state. To achieve this,
an off-chain mechanism to inform the EtherFi ecosystem of operator slashes needs to be introduced,

rendering the need for balance-based state deduction redundant.

Furthermore, calculations within the implementation need to rely on both the measured
balance of the node as well as the node's state. In order to ensure that they cannot be manipulated between
the time window of a node being slashed and its slash being reflected on-chain, a distribution request
should be throttled via the using a time threshold in which the EtherFi team is

expected to report the node's slash state on-chain.

Alleviation:

The EtherFi team has evaluated this exhibit and has stated that a node operator would be willing to exit to
acquire the "donated" ETH. The vulnerability describes that this can be used to reduce the EtherFi network's
nodes and this has been accepted by the EtherFi team as an intended function. Due to this, we consider the

exhibit as acknowledged.

EtherFiNodesManager Manual Review Findings

EFM-01M: Inexistent Disable of Initializer

Type Severity Location
Standard Conformity EtherFiNodesManager.sol:L63-L119
Description:

The contract is meant to be an upgradeable contract that is initialized via the

A IS RN LI ELE EYERE LR EWR RN fUNCtion, however, the base implementation of

RA TSRS LEREY¥a is not disabling the initializer during its construction.

Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/EtherFiNodesManager.sol

SOL

tion initialize(

address treasuryContract,
_auctionContract,
__stakingManagerContract,

address tnftContract,

address bnftContract,

ss protocolRevenueManagerContract

) external initializer {

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L63-L119

Recommendation:

We advise a to be introduced to ISR tEr e that executes

RS RE ERER I IR-FENNCERLI RIS LR ERRRANY cNsuring that the base implementation of

IRA SRR S LIERE ¥ Cannot be initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

EFM-02M: Inexistent Prevention of Duplicate Exit

Type Severity Location
Input Sanitization EtherFiNodesManager.sol:L507, L510-L511
Description:

The 3R Y BV EE Y FYRRY SYLLER G 22 R function will not evaluate that the exit being processed is

valid, permitting the same node to be exited twice. In such a case, the node's exit timestamp can be

overridden affecting its penalty calculations.

Impact:

As the will be arbitrarily resettable in the [EnSaEmgag the penalty it actually applies in its
RSP E DI CRRE D SN AT RA DN EURAA can be influenced by resetting it as "exited".

Example:

src/EtherFiNodesManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L171-L187
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

function processNodeExit (
uint256 validatorId,
uint32 exitTimestamp
) internal ({

address etherfiNode = etherfiNodeAddress[validatorId];

IEtherFiNode (etherfiNode) .markExited (exitTimestamp) ;

uint256 amount = protocolRevenueManagerInstance

.distributeAuctionRevenue (_validatorId) ;

IEtherFiNode (etherfiNode) .setLocalRevenueIndex (0) ;

uint256 toOperator,

uint256 toTnft,

uint256 toBnft,

uint256 toTreasury

) = IEtherFiNode (etherfiNode) .calculatePayouts (

amount,
protocolRewardsSplit,
SCALE

) i

address operator = auctionInterfacelnstance.getBidOwner (validatorId);
address tnftHolder = tnftInstance.ownerOf(validatorId);
address bnftHolder = bnftlInstance.ownerOf (validatorId);

numberOfValidators -= 1;

IEtherFiNode (etherfiNode) .withdrawFunds (
treasuryContract,
toTreasury,
operator,
toOperator,
tnftHolder,
toTnft,
bnftHolder,
toBnft

L T T LT R L T .

Recommendation:

We advise the code to ensure that the is not in an phase already, preventing the exit

timestamp of a node from being re-set.

Alleviation:

The EtherFi team has stated that they wish to retain the capability of overwriting the exit timestamp of a
node to ensure mistakes can be corrected. As such, we consider this exhibit nullified based on the fact that

it represents desirable behaviour by the EtherFi team.

EFM-03M: Inexistent Sanitization of Non-Exit Penalty Rate

Type Severity Location
Input Sanitization EtherFiNodesManager.sol:L439-1445
Description:

Il)ls) EtherFiNodesManager : : setNonExitPenaltyDailyRate JillalailelsRENIEIal Ao N1 [e)VATaIS

NN SRS ERRAMEERRR-ERI \/alue to be updated, however, no sanitization is performed on the new

_nonExitPenaltyDailyRate value.

Impact:
A misconfiguration of this variable will cause arithmetic underflows in each instance thus

rendering the system's non-exit penalty inoperable.

Example:

src/EtherFiNodesManager.sol

SOL

function setNonExitPenaltyDailyRate (
uint64 nonExitPenaltyDailyRate

) public onlyOwner ({

nonExitPenaltyDailyRate = nonExitPenaltyDailyRate;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L441-L445

Recommendation:

We advise it to be mandated as less-than-or-equal-to as otherwise calculations within
will fail to execute properly.

Alleviation:

A EeBER check was properly introduced ensuring that the non-exit penalty daily rate is at most equal to

1008

EFM-04M: Inexistent Validation of Node State

Type Severity Location
Logical Fault @ Major EtherFiNodesManager.sol:L191-L196, L260-L266
Description:

IliE] EtherFiNodesManager: :partialWithdraw [Elale!

EtherFiNodesManager: :partialWithdrawBatchGroupByOperator JiValatlela Al NeI-T s elid-Nalele (SR ie N o]:]

partially withdrawn even after it has been marked as (RgRa8 In such a case, a significant vulnerability arises

whereby a user performs a partial withdrawal of an exited node and sets the flag to

crue]
Ll (EReele[Ne) H oTe) { s R IV el oI IR VI INIs\o'CCRUIE ProtocolRevenueManager: :distributeAuctionRevenue

function which will distribute a value of f§ while setting the node's to the latest
RS e ey. As such, the node will begin accruing auction rewards when it is not part of the

network.
Impact:

Auction fee funds can be siphoned out from the system improperly by inactive validators as the partial

withdrawal mechanisms inadequately validate the node's current phase.

Example:

src/EtherFiNodesManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L191-L239
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNodesManager.sol#L260-L332
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L107-L116

function partialWithdraw (
uint256 validatorId,
bool stakingRewards,
bool protocolRewards,
bool vestedAuctionFee
) public nonReentrant {
address etherfiNode = etherfiNodeAddress[validatorId];
uint256 balance = address (etherfiNode) .balance;
require (
balance < 8 ether,

"etherfi node contract's balance is above 8 ETH. You should exit the node."

uint256 toOperator,
uint256 toTnft,
uint256 toBnft,
uint256 toTreasury
) = getRewardsPayouts (
_validatorId,
_stakingRewards,
_protocolRewards,
_vestedAuctionFee
) i
if (protocolRewards) {
protocolRevenueManagerInstance.distributeAuctionRevenue (
_validatorId
)
}
if (vestedAuctionFee) ({

IEtherFiNode (etherfiNode) .processVestedAuctionFeeWithdrawal () ;

address operator = auctionInterfacelnstance.getBidOwner (validatorId);
address tnftHolder = tnftInstance.ownerOf(validatorId);
address bnftHolder = bnftlInstance.ownerOf (validatorId);

IEtherFiNode (etherfiNode) .withdrawFunds (
treasuryContract,
toTreasury,
operator,

toOperator,

bnftHolder,

toBnft

Recommendation:

We advise the partial withdrawal code to validate the phase of an oracle that is being attempted to be

withdrawn from. If the phase is the and flags should be set
to thus ensuring that only the flag can be as the auction fee may vest

after a protocol has been exited and its full withdrawal has been performed.

As an additional point, these mechanisms should also ensure that a node is in either a jlaga or EhesRAy state

as otherwise withdrawals should not be possible.

Alleviation:

The code of was updated to ensure that if a particular EtherFi node has been
marked as exited it is not to be distributed auction revenue rewards. As such, the described vulnerability is

not possible. As such, we consider this exhibit alleviated.

EFM-05M: Weak Validation of Node State

Type Severity Location
Language Specific @ Major EtherFiNodesManager.sol:L200, L282, L342
Description:

The and values are utilized throughout the EtherFi codebase to represent the base stake
value of an node and a number up to which staking rewards can safely accumulate to prior

to being withdrawn and distributed to the various users of an EtherFi node respectively.

As the system evaluates whether a node has "exited", has been "slashed", or has accrued normal staking
rewards using a balance-based measurement, it is possible to influence a node's state via direct transfers. As
an example, you can force a node to exit by directly transferring aCEaENels R SENET I RENN:INtA S (O it, a
significantly undesirable trait. Additionally, there is no inherent limitation to the staking rewards a node may

acquire and as such, a node that has been inactive for a significant period of time can exceed this number.

Impact:

It is currently possible to "lock up" rewards of any node until it has been exited at a cost of

DRSS N (T I ERE IS ISt ¥a Dcr node. This opens up an easy-to-access denial-of-service attack that

renders all nodes of the EtherFi ecosystem susceptible to outside influence.

Example:

src/EtherFiNodesManager.sol

SOL

require (
balance < 8 ether,

"etherfi node contract's balance is above 8 You should exit the node."

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Recommendation:

We advise the overall flow of EtherFi to be revised to instead rely on a consistent node state. To achieve this,
an off-chain mechanism to inform the EtherFi ecosystem of operator slashes needs to be introduced,

rendering the need for balance-based state deduction redundant.

Furthermore, calculations within the implementation need to rely on both the measured
balance of the node as well as the node's state. In order to ensure that they cannot be manipulated between
the time window of a node being slashed and its slash being reflected on-chain, a distribution request
should be throttled via the using a time threshold in which the EtherFi team is

expected to report the node's slash state on-chain.

Alleviation:

The EtherFi team has evaluated this exhibit and has stated that a node operator would be willing to exit to
acquire the "donated" ETH. The vulnerability describes that this can be used to reduce the EtherFi network's
nodes and this has been accepted by the EtherFi team as an intended function. Due to this, we consider the

exhibit as acknowledged.

NodeOperatorManager Manual Review Findings

NOM-01M: Inexplicable Capability of Re-Invocation

Type Severity Location
Centralization Concern NodeOperatorManager.sol:L124-L131
Description:

IIi&) NodeOperatorManager: : setAuctionContractAddress pENﬂﬁSthe auctionManagerContractAddress

entry to be configured due to circular dependencies, however, it can be invoked an arbitrary number of

times.

Example:

src/NodeOperatorManager.so

SOL

function setAuctionContractAddress (
address _auctionContractAddress

) public onlyOwner ({

auctionManagerContractAddress = auctionContractAddress;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L127-L131

Recommendation:

Given that the implementation represents an upgradeable contract, we advise the code to

allow setting the ERISRRIaEtElstaslellarYetdNslsbaXL) ONly once thus ensuring that the contract's operation

cannot be compromised via privilege misuse.

Alleviation:

The referenced function has had a check introduced to ensure it cannot be re-invoked beyond its

initialization, alleviating this exhibit's concerns fully.

NOM-02M: Incorrect Verification of Whitelist

Type Severity Location
Logical Fault @ Major NodeOperatorManager.sol:L50, L137-L149
Description:

The NodeOperatorManager:: verifyWhitelistedAddress function invoked dang a

(1 0] SR LRI VT BT TP R TN S RPN F O SIEXLEY nvOcation is unrestrictive, permitting the transaction to

succeed and a user to register as a node operator even if they are not part of the whitelist.

Impact:

In the current implementation, any user can register as a node operator with valid REIEREE regardless of

whether they have been explicitly authorized.

Even if the system's design is to allow a user to register as a node operator without being present in the
whitelist, the current code is incorrect as the user would have no way to re-enter the whitelist after they have
registered due to the check at the top of the function. As such, the current behaviour is incorrect

regardless of the system's intended design.

Example:

src/NodeOperatorManager.sol

SOL

function verifyWhitelistedAddress (

_user,
byt 32 calldata merkleProof
) internal returns (bool whitelisted) {

whitelisted = MerkleProof.verify (

_merkleProof,

merkleRoot,

keccak256 (abi.encodePacked(user))
) i
if (whitelisted) {

whitelistedAddresses|[user] = true;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L137-L149
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L37-L57

Recommendation:

We advise the REEESEETFSICEEY PERERR R IR0 ERNERS LI LEXERY code to be updated, evaluating the
status in a check instead.

Alleviation:

The EtherFi team has stated that this is intended behaviour and that they do not intend to allow users to
whitelist after they have been registered. As such, we consider this exhibit nullified as it outlines desirable

behaviour by the EtherFi team.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/NodeOperatorManager.sol#L137-L149

ProtocolRevenueManager Manual Review Findings

PRM-01M: Inexplicable Capability of Re-Invocation

Type Severity Location
Centralization Concern ProtocolRevenueManager.sol:L121-L125, L130-L134
Description:

Ilif&) ProtocolRevenueManager: : setEtherFiNodesManagerAddress o4
ProtocolRevenueManager: : setAuctionManagerAddress pennhthe etherFiNodesManager ol

variables respectively to be set after the contract's initialization due to circular

dependencies, however, each function can be invoked an arbitrary number of times.

Example:

src/ProtocolRevenueManager.sol

SOL

function setEtherFiNodesManagerAddress (

address _etherFiNodesManager

) external onlyOwner

etherFiNodesManager = IEtherFiNodesManager (_etherFiNodesManager) ;

function setAuctionManagerAddress (
address _auctionManager
) external onlyOwner ({

auctionManager = IAuctionManager (auctionManager) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L121-L125
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L130-L134

Recommendation:

As both the [SNCEaRINIERIERE Lt . PP IIRRSIIELE ¥ CoNtracts represent an upgradeable module, we

advise the referenced functions to be invoke-able only once.

Alleviation:

All referenced functions have had checks introduced that ensure they cannot be re-invoked

beyond their initialization, alleviating this exhibit's concerns fully.

PRM-02M: Inexistent Disable of Initializer

Type Severity Location
Standard Conformity @ nformational ProtocolRevenueManager.sol:L39-L48
Description:

The contract is meant to be an upgradeable contract that is initialized via the

ZTTLITIR LNV ELET SRR R LR ERER Y function, however, the base implementation of

oIl IRV S MEREL Y (s NOt disabling the initializer during its construction.

Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/ProtocolRevenueManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L39-L48

contract ProtocolRevenueManager
Initializable,
IProtocolRevenueManager,
PausableUpgradeable,
OwnableUpgradeable,
ReentrancyGuardUpgradeable,
UUPSUpgradeable

IEtherFiNodesManager public etherFiNodesManager;

TAuctionManager public auctionManager;

uint256 public globalRevenuelndex;

uintl28 public vestedAuctionFeeSplitForStakers;

uintl28 public auctionFeeVestingPeriodForStakersInDays;

uint256[32] gap;

function initialize () external initializer {

Recommendation:

We advise a to be introduced t0 ER SRl I Trrpeae that executes

IR SRS R I IR-FENNCER-LI RIS LR ERRRAY cNsuring that the base implementation of

I IINRN AN IVEREYeI¥d Cannot be initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

PRM-03M: Inexistent Sanitization of Fee Proportion

Type Severity Location
Input Sanitization ProtocolRevenueManager.sol:L149
Description:

I4E] ProtocolRevenueManager: : setAuctionRewardSplitForStakers JillalailelaNelelINsle Kol iV RIcHTaToll]:

argument, permitting an un-serviceable fee split to be set.

Impact:
A misconfigured fee split will cause the local and global revenue indexes of the EtherFi protocol to be

misconfigured, greatly affecting the system's reward accounting.

Example:

src/ProtocolRevenueManager.sol

SOL

function setAuctionRewardSplitForStakers (
uintl28 split

external onlyOwner {

vestedAuctionFeeSplitForStakers = split;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L146-L150

Recommendation:

We advise the code to ensure that the input is at most equal to the maximum accuracy
supported by (RSP

Alleviation:

The auction reward split is now properly sanitized as being at most alleviating this exhibit in full.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L73-L103

ScoreManager Manual Review Findings

SMR-01M: Inexistent Disable of Initializer

Type Severity Location

Standard Conformity @ 'nformational ScoreManager.sol:L46-L54

Description:

The contract is meant to be an upgradeable contract that is initialized via the

e RIS function, however, the base implementation of is not disabling

the initializer during its construction.

Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/ScoreManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L49-L54

contract ScoreManager is
IScoreManager,
Initializable,
OwnableUpgradeable,
PausableUpgradeable,
ReentrancyGuardUpgradeable,
UUPSUpgradeable

uint32 public numberOfTypes;

mapping (uint256 => mapping (address => bytes32)) public

mapping (uint256 => bytes32) public totalScores;

(
mapping (address => bool) public allowedCallers;
(

mapping (uint256 => bytes) public scoreTypes;
mapping (bytes => uint256) public typelds;

uint256[32] gap;

event ScoreSet (address indexed user, uint256 score typelD, bytes32 data);

event NewTypeAdded (uint256 Id, bytes ScoreType) :;

function initialize () external initializer {
___Pausable init();
__Ownable init();
___UUPSUpgradeable init():;

_ReentrancyGuard init();

Recommendation:

We advise a to be introduced to that executes

Initializable:: disableInitializers RASUEIteRIIEIRINNEIRInlelntlate elolaReli cannot

be initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

SMR-02M: Inexplicable Data Types

Type Severity Location
Language Specific ScoreManager.sol:L25, L28
Description:

The contract utilizes a (N4ERER) variable for maintaining the scores of a particular type ID
and the users within it, however, contracts such as and [RRSUERIRA S all cast the
bytes32 NEIVERLS values prior to use.

Example:

src/ScoreManager.sol

SOL

mapping (uint256 => mapping (address => bytes32)) public scores;

mapping (uint256 => bytes32) public totalScores;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Recommendation:

We advise the data types of (R aaeinesg to be converted to EEERERAg optimizing and simplifying the
code of the overall EtherFi project significantly as complex type casts from and to values would no

longer be necessary.
Alleviation:

The data types are no utilized for both declarations as well as throughout the contract's

codebase, optimizing it significantly.

SMR-03M: Inexistent Sanitization of Valid Type

Type Severity Location
Input Sanitization ScoreManager.sol:L62, L74
Description:

II)lS] ScoreManager: : setScore [Elfloll ScoreManager: : setTotalScore JiV[glailelse o RalI V=] Ie EIt=RisF il sl:
supplied [gseatsl is valid.

Impact:

It is possible to alter scores for a type ID that has not yet been included to the (S IaNEErEes

Example:

src/ScoreManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#input-sanitization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L61-L68
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L73-L78

function setScore (
uint256 typeld,
address user,
bytes32 score
) external allowedCaller (msg.sender) nonZeroAddress (user) {
scores[typeld] [user] = score;

emit ScoreSet(user, typeld, score);

function setTotalScore (
uint256 typeld,
bytes32 totalScore
) external allowedCaller (msg.sender) {

totalScores|[typeld] = totalScore;

function setCallerStatus(address caller, bool flag) external onlyOwner nonZeroAddred

allowedCallers[caller] = flag;

function addNewScoreType (bytes memory type) external onlyOwner returns (uint256) {

scoreTypes [numberOfTypes] = type;
typelds[type] = numberOfTypes;

emit NewTypeAdded (numberOfTypes, type):;

numberOfTypes++;

return numberOfTypes - 1;

Recommendation:
We advise a check to be introduced ensuring that the provided type ID is less-than the value of

numberOfTypes §

Alleviation:

The supplied as input to a (RN I call is now properly sanitized as being in
existence, alleviating this exhibit in full as the [HEENCLECEL SRR ISFRELISR function is no longer present.

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ScoreManager.sol#L61-L68
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ScoreManager.sol#L73-L78

SMR-04M: Improper Score Maintenance Mechanisms

Type Severity Location
Language Specific ScoreManager.sol:L66, L77
Description:

The contract is meant to maintain a list of user scores as well as their sum for a particular

Bty however, the maintenance of the score list's validity is performed entirely manually.

As multiple transactions are required to maintain each score type's validity, a race-condition manifests
whereby users can exploit an incorrect state between adjustment transactions.
Impact:

As the total score and a user's score would be adjusted in separate transactions, a race condition manifests
during the time window between those two invocations that a user can exploit while possessing an "unfair”

proportion of the total score.

Example:

src/ScoreManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

function setScore(
6 typeld,
address user,
bytes32 score
xternal allowedCaller (msg.sender) nonZeroAddress (_user)

scores[typeld] [user] = score;

emit ScoreSet(user, typeld, score);

function setTotalScore (
uint256 typeld,
bytes32 totalScore
) external allowedCaller (msg.sender) {

totalScores([typeld] = totalScore;

Recommendation:

We advise the code to expose functions that increment or decrement a user's score and in such a case to

also increment or decrement the total score of the respectively, ensuring that the score list of

is managed automatically.

Alleviation:

The code now properly maintains the total score of a whenever an individual's score is set with the

RITE R VT EYe PERRFINLILERELEY function removed, alleviating this exhibit in full.

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/ScoreManager.sol#L73-L78

StakingManager Manual Review Findings

SME-01M: Inexplicable Capability of Re-Invocation

Type Severity Location

StakingManager.sol:L223-1229, L239-L244, L246-1.248, L250-

Centralization C
entralization Concern 1952

Description:

The referenced functions permit sensitive configurational variables of the contract to be set at will.

Example:

src/StakingManager.sol

SOL

function setEtherFiNodesManagerAddress (
address nodesManagerAddress

) public onlyOwner ({

nodesManagerIntefaceInstance = IEtherFiNodesManager (

_nodesManagerAddress

)&

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#centralization-concern

Recommendation:

Given that these contracts represent either upgradeable implementations or implementations meant to
remain the same throughout the contract's lifetime, we advise the functions to be invoke-

able only once by evaluating whether the variable they adjust has already been set to a non-zero entry.

Alleviation:

All referenced functions have had checks introduced that ensure they cannot be re-invoked

beyond their initialization, alleviating this exhibit's concerns fully.

SME-02M: Inexistent Disable of Initializer

Type Severity Location
Standard Conformity StakingManager.sol:L76-L90
Description:

The contract is meant to be an upgradeable contract that is initialized via the

SEEVIRte e P SRR R SREERERTY fUNCtion, however, the base implementation of FlEElERteEtttettal iS NOt

disabling the initializer during its construction.

Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src/StakingManager.sol

SOL

function initialize (address auctionAddress) external initializer ({

stakeAmount = 32 ether;

maxBatchDepositSize = 16;

___Pausable init();
___Ownable init();
___UUPSUpgradeable init () ;
__ReentrancyGuard init();

auctionInterfaceInstance = IAuctionManager (_auctionAddress);
depositContractEth2 = IDepositContract (

O0xff50ed3d0ec03aC01D4C79aAd74928BFF48a7b2b
) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L76-L90

Recommendation:

We advise a to be introduced to Bl ER N that executes

IR RS CAE I IR-TNNCER-LI AR SRR ERERAYEY cnsuring that the base implementation of FEclSRIsUEETs{a

cannot be initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

SME-03M: Incorrect Data Entry

Type Severity Location
Logical Fault @ Major StakingManager.sol:L291, L339
Description:

Based on the execution flow of and IEER LI the node operator that will

"register" a validator must be the initial bid creator in the that a "financer" has submitted

the required to run the node. As such, the [N EE I TR L TP function must
assign the [N T R T e e ayg of the processed bid rather than the (IRl naas

Impact:

The "auction" system is presently not operating as the same user who submits the for a node is

intended to run it, simply acquiring the fee of an auction arbitrarily at no benefit of the bid's creator.

Example:

src/StakingManager.sol

SOL

function processDeposit (uint256 bidId) internal {

bidIdToStaker|[bidId] = msg.sender;

6 validatorId = bidId;
address etherfiNode = createEtherfiNode (validatorId) ;
nodesManagerIntefaceInstance.setEtherFiNodePhase (
validatorId,
IEtherFiNode.VALIDATOR PHASE.STAKE DEPOSITED

) g

emit StakeDeposit (msg.sender, bidId, etherfiNode) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L338-L349
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L262-L264

Recommendation:

We advise the referenced assignment to be updated accordingly, ensuring a correct execution and "auction'

style flow in the EtherFi codebase.

To note, the way the NFTs of the node's creation are distributed will also need to be governed in trustless
manner by the contract's code rather than being specified by the node operator to ensure the original

bidder also obtains fund-related rights over the node that is created.

Alleviation:

The EtherFi team has stated the current flow of execution in the contract is correct and our assumption in
relation to the matching mechanism is incorrect. As such, we consider this exhibit nullified as the code

satisfies EtherFi's business requirements in its current state.

SME-04M: EZEPNY Validator Front-Run Withdrawal Credential Attack

Type Severity Location
Logical Fault @ Major StakingManager.sol:L299-L304
Description:

The node deposit mechanism of [l eRheeEg is insecure as it suffers from an inherent flaw in

Ethereum's RS IRasaaaaeg. (N detail, multiple deposits for the same can be performed with
the validator being activated solely when all deposits sum to EEIiauEs

A caveat of this system is that the system will honour the withdrawal credentials that were specified

in the first PISCEFRISSAIECTRRP SIS transaction, not necessarily the ones specified in
R T T T L . As such, it is possible for all fund related operations (exits,

rewards, etc.) to be redirected to a different address unrelated to the EtherFi protocol. For more information,

consult RocketPool’'s Withdrawal Credential Exploit Analysis.

Impact:

It is presently possible to activate an EtherFi node without necessarily setting it as the intended recipient of

an node's withdrawal, undermining the EtherFi system as a whole.

Example:

src/StakingManager.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#logical-fault
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/StakingManager.sol#L280-L334
https://github.com/rocket-pool/rocketpool-research/blob/master/Reports/withdrawal-creds-exploit.md

function registerValidator (
uint256 validatorId,
address DbNftRecipient,
address tNftRecipient,
DepositData calldata depositData
) internal {
require (
nodesManagerIntefacelInstance.phase(validatorId) ==
IEtherFiNode.VALIDATOR PHASE.STAKE DEPOSITED,
"Incorrect phase"
) 7
require (bidIdToStaker[validatorId] == msg.sender, "Not deposit owner");

address staker = bidIdToStaker[validatorId];

bytes memory withdrawalCredentials = nodesManagerIntefacelnstance

.getWithdrawalCredentials(validatorId);

depositContractEth2.deposit{value: stakeAmount} (
_depositData.publicKey,
withdrawalCredentials,
_depositData.signature,

_depositData.depositDataRoot
) ;

nodesManagerIntefaceInstance.incrementNumberOfValidators (1) ;
nodesManagerIntefaceInstance.setEtherFiNodePhase (
_validatorId,
IEtherFiNode.VALIDATOR PHASE.LIVE
)
nodesManagerIntefaceInstance
.setEtherFiNodelIpfsHashForEncryptedValidatorKey (
_validatorId,
_depositData.ipfsHashForEncryptedvalidatorKey

) ;

uint256 nftTokenId = validatorId;
TNFTInterfaceInstance.mint (tNftRecipient, nftTokenId);
BNFTInterfaceInstance.mint (bNftRecipient, nftTokenId);

auctionInterfaceInstance.processAuctionFeeTransfer (validatorId);

emit ValidatorRegistered (
auctionInterfaceInstance.getBidOwner (validatorId),
_bNftRecipient,
_ENftRecipient,
_validatorId,
_depositData.publicKey,
_depositData.ipfsHashForEncryptedvValidatorKey

) i

Recommendation:

We advise the validator registration mechanism to be revised, performing the deposit to the Beacon chain
but not affecting the EtherFi system (i.e. not incrementing the number of validators, not affecting the node
phase etc.). Afterwards, an entity (such as a DAO or the EtherFi team) that can process off-chain knowledge
will need to validate that the beacon chain registration has been performed with the correct withdrawal
credentials and submit a transaction to a new function in that will "activate" the EtherFi
node by setting it to , adjusting the number of validators, minting the relevant NFTs, transferring the
auction fee, and setting the IPFS hash of the encrypted validator key.

Alleviation:

The EtherFi team has stated that they identified this flaw during the audit process, however, the code
appears to not apply a solution for it. Additionally, no issue was present in the GitHub repository that

outlines it. As such, we consider this exhibit not alleviated.

TNFT Manual Review Findings

TNF-01M: Inexistent Disable of Initializer

Type Severity Location

Standard Conformity @ nformational TNFT.sol:L19-L25

Description:

The contract is meant to be an upgradeable contract that is initialized via the i3 EEERERSENEEI

function, however, the base implementation of is not disabling the initializer during its construction.

Impact:

While not an active threat in this particular instance, base implementations that may perform a
to an administrator-defined party can be compromised even if proxied. As such, it is best

practice to always initialize base implementations of proxies automatically on deployment.

Example:

src¢/TNFT.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/TNFT.sol#L19-L25

contract TNFT is ERC721Upgradeable, UUPSUpgradeable, OwnableUpgradeable ({

address public stakingManagerAddress;

uint256[32] gap;

function initialize (address stakingManagerAddress) initializer external ({

__ERC721 init("Transferrable NFT", "TNET");
__Ownable init();

___UUPSUpgradeable init();

stakingManagerAddress = stakingManagerAddress;

Recommendation:

We advise a to be introduced to [iStaM that executes

IR RS RER I IR-TENNCER-LI RS SRR ERERAYE] <N suring that the base implementation of Nl cannot be

initialized maliciously.

Alleviation:

A EIelEREattedeta \vas introduced that properly disables the contract's initializers via the

IRCE R R Y IR-F NG ER-LI AR NRE R R RAIEY [LNCtion, disallowing the contract from being initialized at its

logic contract location.

AuctionManager Code Style Findings

AMR-01C: Inefficient Optimization of Iterator Increment

Type Severity Location
Gas Optimization AuctionManager.sol:L126, L245-L249
Description:

The referenced optimization of the iterator's increment statement is ineffective as a function is

invoked that contains significant overhead.

Example:

src/AuctionManager.so

SOL

for (uint256 i ;7 1 < bidSize; i = uncheckedInc(i)) {

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the code to instead optimize the iterator's increment by omitting it from the declaration and
relocating it at the end of the loop's body, wrapping the increment statement ({EgY) in an

code block.

Alleviation:

While the inefficient invocation was omitted, the code still inefficiently increments the
iterator by performing a simple operation. We advise the operation to be relocated to the end of the
loop in an code block and to additionally perform a pre-fix increment operation ({gE®) as its

more optimal than a post-fix increment operation (EiR).

AMR-02C: Inefficient Lookups

Type Severity Location

AuctionManager.sol:L167, L168, L171, L174, L191, L193, L202,
L204

Gas Optimization
Description:
The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

src/AuctionManager.sol

SOL

function cancelBid(uint256 bidId) public whenNotPaused {

require (bids[bidId] .bidderAddress == msg.sender, "Invalid bid");

require (bids[bidId].isActive == true, "Bid already cancelled");

bids[bidId].isActive = false;

uint256 bidValue = bids[bidId].amount;

(bool sent,) = msg.sender.call{value: bidvalue} ("");

require (sent, "Failed to send Ether");

numberOfActiveBids—-;

emit BidCancelled(bidId) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.

Alleviation:

While the bid cancellation mechanism optimized its mapping lookups, the

AuctionManager: :updateSelectedBidInformation [Elflel AuctionManager: : reEnterAuction fgele[s

segments were not updated.

https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L188-L195
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L199-L207

AMR-03C: Loop Iterator Optimization

Type Severity Location
Gas Optimization AuctionManager.sol:L158
Description:

The linked loop increments / decrements the iterator "safely" due to Solidity's built-in safe arithmetics

(post (RERED).

Example:

src/AuctionManager.sol

SOL

for (uint256 i = 0; 1 < bidIds.length; i++) {

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the increment / decrement operation to be performed in an code block as the last
statement within the loop to optimize its execution cost.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

AMR-04C: Non-Standard Gap Size

Type Severity Location
Standard Conformity AuctionManager.sol:L39
Description:

The referenced mvariable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of

variables in storage in the overall contract.

Example:

src/AuctionManager.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

The methodology employed for calculating the appropriate for the variable in OpenZeppelin is to
utilize the value of as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. @ in the case of [fg)- We advise the size of this variable to be corrected by applying the same
methodology and ensuring the of the gap is directly correlated to the storage layout of the contract

it resides in.

Alleviation:

The [ERY array's has been adjusted to a standardized value as advised.

AMR-05C: Redundant Duplicate Application of Access Control

Type Severity Location
Gas Optimization AuctionManager.sol:L157, L166
Description:

The top-level pASTERSAIEE LY FEERIPLLENA-ER1-EYei function will apply the
PausableUpgradeable: :whenNotPaused modifier and will invoke the AuctionManager: :cancelBid

function that also applies the same modifier.

Example:

src/AuctionManager.sol

SOL

function cancelBidBatch (uint256[] calldata bidIds) external whenNotPaused {

for (uint256 i = 0; i < bidIds.length; i++) {
cancelBid(bidIds[i]);

function cancelBid(uint256 bidId) public whenNotPaused {

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161

Recommendation:

We advise the JEINEETIRNIoe st CEYARFRININSRLRELN] Modifier to be omitted from the top-level
TSI RSN VEL BT CE SRRCPR IR G- BR¥eiY function, optimizing the code's gas cost.

As an alternative optimization, the code of can be relocated to an
underscore-prefixed () function that is invoked by both and

while retaining the modife
in (N e TN reaey ensuring that the batch cancellation operation applies the

modifier only once during its execution.

Alleviation:

LK le LRIl AuctionManager: : cancelBid JWERNEEICIEIIe RN 2 uct i onManager: : cancelBid JINNEIIeE]
IS[aledlelsRisEiMolel{sRisls) AuctionManager: : cancelBid [Elflell AuctionManager: : cancelBidBatch j{V[glaifelsH

invoke, optimizing the codebase as advised.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L157-L161
https://github.com/GadzeFinance/dappContracts/blob/3a52fa3a5d0da62d248ecd600fecb8dd0081cb4d/src/AuctionManager.sol#L157-L161

BNFT Code Style Findings

BNF-01C: Non-Standard Gap Size

Type Severity Location
Standard Conformity BNFT.sol:L14
Description:

The referenced mvariable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of

variables in storage in the overall contract.

Example:

src/BNFT.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

The methodology employed for calculating the appropriate for the variable in OpenZeppelin is to
utilize the value of as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. jl in the case of). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the of the gap is directly correlated to the storage layout of the contract

it resides in.

Alleviation:

The [ER array's has been adjusted to a standardized value as advised.

ClaimReceiverPool Code Style Findings

CRP-01C: Duplicate Invocation of Getter

Type Severity Location
Gas Optimization ClaimReceiverPool.sol:L126, L139
Description:

The referenced declarations are assigned to the same evaluation in two separate variables.

Example:

src/ClaimReceiverPool.sol

SOL

uint256 scoreTypeld = scoreManager.typelds ("Early Adopter Pool");
require (scoreManager.scores (

scoreTypeld,

msg.sender) byt 7 ;, "Already Deposited"):;

"You

require (_points > 0,

uint256 ethAmount = 0;
_ethAmount += msg.value;

ethAmount += swapERC20ForETH (rETH, rEthBal);

ethAmount += swapERC20ForETH (wstETH, wstEthBal);

(
(

_ethAmount += swapERC20ForETH (sfrxETH, sfrxEthBal);
(

_ethAmount += swapERC20ForETH (cbETH, cbEthBal);

uint256 typeld = scoreManager.typelds ("Early Adopter Pool");

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the same variable to be utilized and the second declaration to be omitted entirely, optimizing the
code.

Alleviation:

The score system of the deposit flow in the contract has been refactored rendering this exhibit no longer

applicable.

CRP-02C: Inexistent Gap Declaration

Type Severity Location
Standard Conformity @ nformational ClaimReceiverPool.sol:L18
Description:

The contract does not have any [JllEEg variable declared.
Example:

src/ClaimReceiverPool.sol

SOL

contract ClaimReceiverPool is
Initializable,
PausableUpgradeable,
OwnableUpgradeable,

ReentrancyGuardUpgradeable,

UUPSUpgradeable

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

We advise one to be introduced akin to the rest of the codebase.

Alleviation:

While a [[lEEH has been introduced to the codebase, it has been introduced in between variable
declarations rather than at the end. We strongly advise its declaration to be relocated to the end of the

contract, permitting upgrade-able variable extensibility in a standardized way.

EarlyAdopterPool Code Style Findings

EAP-01C: Code Readability Enhancement

Type Severity Location

Code Style @ nformational EarlyAdopterPool.sol:L159, L175, L243

Description:

The pERSR CISIIIILYFRERSLLEFLISBLELEY function is meant to be utilized by the
EarlyAdopterPool: :claim|[Elflel EarlyAdopterPool : : withdraw RillalailelaslRWi{al-TaNIsT oIV = TgePlagtlal:

signifying whether the funds should be sent to the depositor or the (RIS g however, this
argument is utilized as a with two literal values ({§J or f§ with the latter case applying to all values
different than [§J.

Example:

src/EarlyAdopterPool.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L243-L275
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L165-L178
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L157-L161

function transferFunds (uint256 identifier) internal ({
uint256 rETHbal = userToErc20Balance[msg.sender] [rETH];
uint256 wstETHbal = userToErc20Balance[msg.sender] [wstETH];
uint256 sfrxEthbal = userToErc20Balance[msg.sender] [sfrxETH] ;
uint256 cbEthBal = userToErc20Balance[msg.sender] [cbETH] ;

uint256 ethBalance = depositInfo[msg.sender].etherBalance;

depositInfo[msg.sender] .depositTime = 0;
depositInfo[msg.sender] .totalERC20Balance = 0;
depositInfo[msg.sender] .etherBalance =
userToErc20Balance [msg.sender] [rETH] =
sfrxETH] = 0;
cbETH] = 0;

userToErc20Balance [m sender

[1
userToErc20Balance [msg.sender] [wstETH]

[msg. 110

[110

userToErc20Balance [msg.sender

address receiver;
if (_identifier == 0) {
receiver msg.sender;

} else {

receiver claimReceiverContract;

require (rETHInstance.transfer (receiver, rETHbal), "Transfer failed");

require (wstETHInstance.transfer (receiver, wstETHbal), "Transfer failed");

(
require (sfrxETHInstance.transfer (receiver, sfrxEthbal), "Transfer failed");
(

require (cbETHInstance.transfer (receiver, cbEthBal), "Transfer failed");

(bool sent,) = receiver.call{value: ethBalance} ("");

require (sent, "Failed to send Ether");

Recommendation:

We advise an to be utilized instead, achieving the same result albeit with much greater code legibility

as well as stricter function behaviour as the jERIRZ-XISTISIIIRREFLLLEELIINEY function accepts input

arguments greater than gl when it should not.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L243-L275

EAP-02C: Generic Typographic Mistakes

Type Severity Location
Code Style EarlyAdopterPool.sol:L58, L71, L243, L314, L322
Description:

The referenced lines contain typographical mistakes (i.c. [Eighgtag Variable without an underscore prefix) or

generic documentational errors (i.e. copy-paste) that should be corrected.

Example:

src/EarlyAdopterPool.sol

SOL

event Fundsclaimed (

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise them to be corrected enhancing the legibility of the codebase.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-03C: Inefficient Contract TVL Calculation

Type Severity Location
Gas Optimization @ nformational EarlyAdopterPool.sol:L131-L135, L136
Description:

The Total-Value-Locked (TVL) calculation the contract performs in is

inefficient as it will fetch all the balances held by the contract during the emission of the

event and then re-fetch them during the execution of [EEIR7- XIS -1IH Y. Yol S AL A Lu2q .

Example:

src/EarlyAdopterPool.sol

SOL

emit ERC20TVLUpdated (
rETHInstance.balanceOf (addres
wstETHInstance.balanceOf (addre
sfrxETHInstance.balanceOf (address (this)),
cbETHInstance.balanceOf (address (this)),
address (this) .balance,

getContractTVL ()

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L282-L288

Recommendation:

We advise the calculations of pERIRZ-XII SIS IINERY: XTI ARLEXAR4%A t0 be replicated in the
PRI RIS TP LN BRIV SRS function by using the same balances that have already been fetched for the

ERC20TVLUpdated ESYIalN

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L282-L288
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L110-L138

EAP-04C: Inefficient Lookups

Type Severity Location

Gas Obtimization EarlyAdopterPool.sol:L124-L125, L148-L149, L208, L210, L218-L219,
P L244-1L247, L249, L251-1L253, L255-L258, L302-L306

Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

src/EarlyAdopterPool.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

function deposit (address erc20Contract, uint256 amount)

external
OnlyCorrectAmount (_amount)
DepositingOpen

whenNotPaused

require (

(_erc20Contract == rETH ||
_erc20Contract == sfrxETH ||
_erc20Contract == wstETH ||
_erc20Contract == cbETH),

"Unsupported token"

) i

depositInfo[msg.sender] .depositTime = block.timestamp;
depositInfo[msg.sender].totalERC20Balance += _amount;
userToErc20Balance[msg.sender] [erc20Contract] += amount;

require (IERC20 (_erc20Contract) .transferFrom(msg.sender, address(this), amount), '

emit DepositERC20 (msg.sender, amount);

emit ERC20TVLUpdated (
rETHInstance.balanceOf (address (this)),
wstETHInstance.balanceOf (address (this)),
sfrxETHInstance.balanceOf (address (this)),
cbETHInstance.balanceOf (address (this)),
address (this) .balance,

getContractTVL ()

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive
types or holds a pointer to the contained.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-05C: Insufficient Documentation of Literal

Type Severity Location
Code Style EarlyAdopterPool.sol:L216
Description:

The BEER variable utilized in the calculation within
EarlyAdopterPool: :calculateUserPoints [Jgle]il[eNelsNg:]lole (T Rick! variable declaration with

adequate documentation.

Impact:

As an additional point, the maximum multiplier of may not be achievable during the lifetime of the

R IR e as it represents a length of (iR Raad T achieve a better multiplier factor, the actual

duration of the contract's deposit lifetime can be utilized as a divisor of the actual EESIcEaNeIAILERA Of the
user, ensuring a multiplier result guaranteed to be at most Y and at minimum [y via a

operation.

Example:

src/EarlyAdopterPool.sol

SOL

uint256 userMultiplier = Math.min (
2000,
1000 + ((lengthOfDeposit * 10) / 2592) / 10

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L204-L225

Recommendation:

We advise it to be relocated as such, surrounded by text that clearly denotes it is meant to depict the

duration that elapses to achieve a increase per month (whose duration is simplified to [ERJERRE-

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-06C: Redundant Data Point

Type Severity Location
Gas Optimization EarlyAdopterPool.sol:L166, L184, L207, L323
Description:

The data point is meant to indicate whether IR et SN SRR] transactions should

be possible, however, the same "state" can be validated by evaluating whether the value of [CiEEINSEREInS

is non-zero, a case only satisfied after jEPSRR G ITIS JIIRREINTA L ERX 0} I3N has been invoked.
Example:

src/EarlyAdopterPool.sol

SOL

function setClaimingOpen (uint256 claimDeadline) public onlyOwner {

claimDeadline = block.timestamp + (claimDeadline * 86400);

claimingOpen = 1;

endTime = block.timestamp;

emit ClaimingOpened(claimDeadline) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L165-L178
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EarlyAdopterPool.sol#L182-L188

Recommendation:

We advise this adjustment to be performed, optimizing the code's storage space and gas cost throughout its

functions.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-07C: Redundant Duplicate Data Points

Type Severity Location
Gas Optimization EarlyAdopterPool.sol:L91-L94, L96-199
Description:

The CEE IR Iy contract contains its supported deposit tokens in their (RltaEag format as
variables as well as in their format as simple, no-visibility variables.

Example:

src/EarlyAdopterPool.sol

SOL

address private immutable rETH;
address private immutable wstETH;
private immutable sfrxETH;

s private immutable cbETH;

public claimReceiverContract;

uint8 public claimingOpen;

=> uint256)) public userToErc20Balance;

public depositInfo;

IERC20 rETHInstance;
IERC20 wstETHInstance;
IERC20 sfrxETHInstance;
IERC20 cbETHInstance;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the contract to solely retain either the or counterparts of the tokens, casting the
variables to the desirable type (ElEITaag OF respectively) as needed. We should note that the

and types are identical at the storage level and can both be set as [REEIIRg they simply
serve as syntactic sugar for the Solidity compiler to expose the relevant methods in the case of an

I e

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-08C: Redundant Parenthesis Statements

Type Severity Location
Code Style @ nformational EarlyAdopterPool.sol:L117-L120, L283-L287, L307
Description:

The referenced statements are redundantly wrapped in parenthesis' (8.

Example:

src/EarlyAdopterPool.sol

SOL

(_erc20Contract == rETH | |
_erc20Contract == sfrxETH ||

_erc20Contract == wstETH ||
_erc20Contract == cbETH),

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise them to be safely omitted, increasing the legibility of the codebase.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EAP-09C: Variable Mutability Specifiers (Immutable)

Type Severity

Gas Optimization

Description:

Location

EarlyAdopterPool.sol:L96-L99

The linked variables are assigned to only once during the contract's (RS iaIIaaSs

Example:

src/EarlyAdopterPool.sol

5 _rETH,
s _wstETH,
s sfrxETH,

rETH = rETH;
wstETH = wstETH;
sfrxETH = sfrxETH;
CbETH = cbETH;

rETHInstance = IERC20(rETH);
wstETHInstance = IERC20 (wstETH) ;
sfrxETHInstance = IERC20(sfrxETH);

cbETHInstance = IERC20(_cbETH) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise them to be set as greatly optimizing their read-access gas cost.

Alleviation:

The EtherFi team has opted not to remediate any finding in the implementation as they
have deemed its on-chain data points unusable. As such, we consider this exhibit nullified given that it

pertains a system component that will not be utilized in the EtherFi system.

EtherFiNode Code Style Findings

EFN-01C: Generic Typographic Mistakes

Type Severity Location

Code Style EtherFiNode.sol:L19, L38, L115

Description:

The referenced lines contain typographical mistakes (i.e. [ghgtag Variable without an underscore prefix) or

generic documentational errors (i.e. copy-paste) that should be corrected.

Example:

src/EtherFiNode.sol

SOL

VALIDATOR PHASE public phase;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise them to be corrected enhancing the legibility of the codebase.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

EFN-02C: Ineffectual Conditional Check

Type Severity Location
Gas Optimization EtherFiNode.sol:L301
Description:

The referenced check is ineffectual as it evaluates that an unsigned integer (RS aaang S

greater-than-or-equal-to the value of a which represents a tautology.

Example:

src/EtherFiNode.sol

SOL

uint256 penaltyAmount = principal - remaining;

require (penaltyAmount >= 0, "Incorrect penalty amount");

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the check to either be omitted or instead validate that the is non-zero,
either of which we consider an adequate resolution to this exhibit.

Alleviation:

The ineffectual conditional check has been safely removed from the codebase, optimizing it as a result.

EFN-03C: Ineffectual Usage of Safe Arithmetics

Type Severity Location
Language Specific EtherFiNode.sol:L173, L203
Description:

The linked mathematical operations are guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.

Example:

src/EtherFiNode.sol

SOL

if (_vestedAuctionFee) {

uint256 rewards = getClaimableVestedRewards();

uint256 toTnft = (rewards * 29) / 32;
tnft += toTnft;
bnft += rewards - toTnft;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Recommendation:

Given that safe arithmetics are toggled on by default in versions of we advise the linked
statements to be wrapped in code blocks thereby optimizing their execution cost.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

EFN-04C: Inefficient Calculation of Rewards

Type Severity Location
Gas Optimization EtherFiNode.sol:L211, L261
Description:

IlifE) EtherFiNode: :getStakingRewardsPayouts [Elflell EtherFiNode: : getProtocolRewardsPayouts

functions will continue execution even if the rewards to be split are a inefficiently performing multiple

calculations.

Example:

src/EtherFiNode.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L187-L231
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L241-L263

function getStakingRewardsPayouts (
IEtherFiNodesManager.RewardsSplit memory splits,

uint256 scale

public
view
onlyEtherFiNodeManagerContract
returns (
uint256 toNodeOperator,
uint256 toTnft,
uint256 toBnft,

uint256 toTreasury

uint256 balance address (this) .balance;

uint256 rewards (balance > vestedAuctionRewards)
? balance - vestedAuctionRewards
0;
if (rewards >= 32 ether) {
rewards —-= 32 ether;

} else 1if (rewards >= 8 ether) {

rewards = 0;

uint256 operator,
uint256 tnft,
uint256 bnft,
uint256 treasury

) = calculatePayouts (rewards, splits, scale);

if (exitRequestTimestamp > 0) {
uint256 daysPassedSinceExitRequest = getDaysPassedSince (
exitRequestTimestamp,

uint32 (block.timestamp)

treasury += operator;

operator = 0;

(operator, tnft, bnft, treasury);

Recommendation:

We advise the functions to early if the to be split are § optimizing their execution cost.

Alleviation:

While the function returns early in the case of [HE TRy the code will still execute if

SERETTEN ISR LI RIS MERRe Y \hen it should return early. As such, we consider this exhibit partially

alleviated.

EFN-05C: Inefficient Case Handling

Type Severity Location
Gas Optimization EtherFiNode.sol:L286
Description:

The case whereby a full year has elapsed since the exit request and exit timestamp of a node is inefficiently
handled as the value is set to [instead of directly returning the as the penalty

amount.

Example:

src/EtherFiNode.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

function getNonExitPenalty (
uintl28 principal,
uint64 dailyPenalty,

uint32 exitTimestamp

) public view onlyEtherFiNodeManagerContract returns (uint256) {

if (exitRequestTimestamp == 0) {
return 0;

}

uint256 daysElapsed = getDaysPassedSince (
exitRequestTimestamp,
_exitTimestamp

) 7

uint256 daysPerWeek = 7;

uint256 weeksElapsed = daysElapsed / daysPerWeek;

uint256 remaining = principal;
if (daysElapsed > 365) {
remaining = 0;
} else {
for (uinteod i 0; 1 < weeksElapsed; i++) {
remaining
(remaining * (100 - dailyPenalty) ** daysPerWeek)
(100 ** daysPerWeek) ;

daysElapsed -= weeksElapsed * daysPerWeek;
for (uint64 i = 0; 1 < daysElapsed; i++) {
remaining (remaining * (100 - dailyPenalty)) / 100;

uint256 penaltyAmount = principal - remaining;

require (penaltyAmount >= 0, "Incorrect penalty amount");

return penaltyAmount;

Recommendation:

We advise a direct statement of the amount to be performed, optimizing this case's
gas cost.

Alleviation:

The value is yielded directly in place of the zero-value assignment per our recommendation,

optimizing the codebase.

EFN-06C: Inefficient Loop Iterator Data Type

Type Severity Location
Gas Optimization EtherFiNode.sol:L288, L295
Description:

The EVM is built to operate on 32-byte data types and any operations on types less than that require

additional low-level EVM instructions that increase their gas cost.

Example:

src/EtherFiNode.sol

SOL

for (uint64 i = 0; i < weeksElapsed; i++) {

remaining =

(remaining * (100 - dailyPenalty) ** daysPerWeek) /

(100 ** daysPerWeek) ;

daysElapsed -= weeksElapsed * daysPerWeek;

for (uint64 i = 0; i < daysElapsed; i++) {
remaining = (remaining * (100 - dailyPenalty)) / 100;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

Given that the referenced variables are simply iterators, we advise them to be upcast to variables

thus reducing their gas cost.

Alleviation:

The referenced loops are no longer present in the codebase as part of a separate exhibit, rendering this

exhibit no longer applicable.

EFN-07C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization EtherFiNode.sol:L288, L295
Description:

The linked loops increment / decrement their iterator "safely” due to Solidity's built - in safe arithmetics

(post-EHERED)
Example:

src/EtherFiNode.sol

SOL

for (uint64 i = 0; i < weeksElapsed; i++) {

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last
statement within each loop to optimize their execution cost.

Alleviation:

The referenced loops are no longer present in the codebase as part of a separate exhibit, rendering this

exhibit no longer applicable.

EFN-08C: Optimization of Penalty Calculation

Type Severity Location
Gas Optimization EtherFiNode.sol:L288-L297
Description:

The iterative penalty calculation within piSNS RNl CERY XIS TRV EURID i inefficient as it will split the

calculations per-week while they can be split per-month safely.

Example:

src/EtherFiNode.sol

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

function getNonExitPenalty (
uintl28 principal,
uint64 dailyPenalty,

uint32 exitTimestamp

) public view onlyEtherFiNodeManagerContract returns (uint256) {

if (exitRequestTimestamp == 0) {
return 0;

}

uint256 daysElapsed = getDaysPassedSince (
exitRequestTimestamp,
_exitTimestamp

) 7

uint256 daysPerWeek = 7;

uint256 weeksElapsed = daysElapsed / daysPerWeek;

uint256 remaining = principal;
if (daysElapsed > 365) {
remaining = 0;
} else {
for (uinte64d i 0; 1 < weeksElapsed; i++) {
remaining
(remaining * (100 - dailyPenalty) ** daysPerWeek)
(100 ** daysPerWeek) ;

daysElapsed -= weeksElapsed * daysPerWeek;
for (uint64 i = 0; 1 < daysElapsed; i++) {
remaining (remaining * (100 - dailyPenalty)) / 100;

uint256 penaltyAmount = principal - remaining;

require (penaltyAmount >= 0, "Incorrect penalty amount");

return penaltyAmount;

Recommendation:

A value of SR can safely fit in o [EERAEAI variable, meaning that a calculation of EESUEERERe BN

would be safe to perform as long as is less-than-or-equal to [INEREE} presented otherwise as
ORI Units of a typical pRSkY asset.

As such, a [CENEIREIERYE] value of up to can be immediately utilized in the power-to calculation safely

without requiring any loop. To further optimize the code for durations greater than a month, we advise a

loop introduced that runs as long as [EEptaIRaaas is greater-than [Ef§ Within it, the

value should be set directly to
(remaining * (100 - dailyPenalty) ** Math.min (30, daysElapsed)) / (100 ** Math.min (30,

daysElapsed))

. The SENEIEISIN] iterator should be subtracted by the same value (NETSIESERNECIMINCESZINEY I),
optimizing the (A3 ERF R RANS NARRALNEURAA function's execution significantly. As an added note, the
R R e ihag) \'a/ue can be stored to a local variable outside the loop further optimizing

the code's gas cost.

Alleviation:

The penalty calculation has been optimized per our recommendation, significantly reducing the gas cost of
estimating the non-exit penalty. The EtherFi team chose a value of [instead of §f§} for each loop's

calculation, ensuring a greater degree of safety in the calculations.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/EtherFiNode.sol#L269-L304

EFN-09C: Potentially Incorrect Constants

Type Severity Location
Code Style EtherFiNode.sol:L205, L207, L224, L285, L333, L397
Description:

The referenced lines indicate numeric constants in use within the codebase that appear

incorrect and should at minimum be adequately documented.

Example:

src/EtherFiNode.sol

SOL

if (bnftNonExitPenalty > 0.5 ether) {
payouts[0] += 0.5 ether;

payouts[3] += (bnftNonExitPenalty - 0.5 ether);

} else {
payouts[0] += bnftNonExitPenalty;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

In sequence, each variable is assumed to:

The second and the first before last entries of this list are incorrect as a slash operation can be of up to the
full amount of a validator and the staking rewards an operator accumulates are uncapped and can exceed
B2 For more information, consult the "Weak Validation of Node State” findings in the audit report.

Alleviation:

The EtherFi requested additional guidance in relation to this exhibit. We believe that the second and first

before last entries of the list in the exhibit (M NEERSSNS oNd ICEEEFRRIRIt3a) e incorrect values.

At minimum, we advise them to be adequately documented and relocated to declarations.

EFN-10C: Redundant Parenthesis Statements

Type Severity Location
Code Style EtherFiNode.sol:L202, L399
Description:

The referenced statements are redundantly wrapped in parenthesis' (§8B.

Example:

src/EtherFiNode.sol

SOL

uint256 rewards = (balance > vestedAuctionRewards)

Recommendation:

We advise them to be safely omitted, increasing the legibility of the codebase.

Alleviation:

While the redundant parenthesis from the second instance have been removed, they remain in the first

instance.

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

EFN-11C: Repetitive Value Literals

Type Severity Location

EtherFiNode.sol:L205, L206, L290, L291, L296, L348, L363, L397, L398,

Code Style 1399

Description:

The linked value literals are repeated across the codebase multiple times.

Example:

src/EtherFiNode.sol

SOL

if (rewards >= 32 ether) {

Recommendation:

We advise each to be set to its dedicated variable instead optimizing the legibility of the

codebase.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

EtherFiNodesManager Code Style Findings

EFM-01C: Inexistent Error Messages

Type Severity Location
Code Style @ nformational EtherFiNodesManager.sol:L98-L104, L112-L118, L277-L280
Description:

The linked checks have no error messages explicitly defined.

Example:

src/EtherFiNodesManager.sol

SOL

require (

(stakingRewardsSplit.treasury +

stakingRewardsSplit.nodeOperator +

stakingRewardsSplit.tnft +
stakingRewardsSplit.bnft) == SCALE,

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise each to be set so to increase the legibility of the codebase and aid in validating the
checks' conditions.

Alleviation:

Proper error messages have been introduced for all referenced checks.

EFM-02C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization EtherFiNodesManager.sol:L163, L184, L249, L274, L378
Description:

The linked loops increment / decrement their iterator "safely” due to Solidity's built - in safe arithmetics

(post-EHERED)
Example:

src/EtherFiNodesManager.sol

SOL

for (uint256 i = 0; i < validatorIds.length; i++) {

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last
statement within each loop to optimize their execution cost.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

EFM-03C: Non-Standard Gap Size

Type Severity Location
Standard Conformity EtherFiNodesManager.sol:L45
Description:

The referenced mvariable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of

variables in storage in the overall contract.

Example:

src/EtherFiNodesManager.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

The methodology employed for calculating the appropriate for the variable in OpenZeppelin is to
utilize the value of as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. @ in the case of [fg)- We advise the size of this variable to be corrected by applying the same
methodology and ensuring the of the gap is directly correlated to the storage layout of the contract

it resides in.

Alleviation:

The [ERY array's has been adjusted to a standardized value as advised.

EFM-04C: Redundant Parenthesis Statements

Type Severity Location
Code Style @ nformational EtherFiNodesManager.sol:L99-L102, L113-L116
Description:

The referenced statements are redundantly wrapped in parenthesis' (8.

Example:

src/EtherFiNodesManager.sol

SOL

(stakingRewardsSplit.treasury +

stakingRewardsSplit.nodeOperator +

stakingRewardsSplit.tnft +
stakingRewardsSplit.bnft) == SCALE,

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise them to be safely omitted, increasing the legibility of the codebase.

Alleviation:

Both redundant parenthesis have been removed from the codebase as advised.

EFM-05C: Repetitive Value Literal

Type Severity Location
Code Style EtherFiNodesManager.sol:L.200, L282
Description:

The linked value literal is repeated across the codebase multiple times.

Example:

src/EtherFiNodesManager.sol

SOL

balance < 8 ether,

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

NodeOperatorManager Code Style Findings

NOM-01C: Inefficient Lookups

Type Severity Location

NodeOperatorManager.sol:L44, L53-L54, L65, L67, L71, L72,

Gas Optimization L106, L107

Description:

The linked statements perform key-based lookup operations on declarations from storage multiple

times for the same key redundantly.

Example:

src/NodeOperatorManager.sol

SOL

function fetchNextKeyIndex (
s _user
) external onlyAuctionManagerContract returns (uint64d) {
uint64 totalKeys = addressToOperatorData[user].totalKeys;
require (
addressToOperatorData[user].keysUsed < totalKeys,
"Insufficient public keys"

) g

uint64 ipfsIndex = addressToOperatorData[user].keysUsed;

addressToOperatorData[user].keysUsed++;

return ipfsIndex;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of primitive

types or holds a pointer to the contained.

Alleviation:

All referenced lookups have been optimized as advised.

ProtocolRevenueManager Code Style Findings

PRM-01C: Non-Standard Gap Size

Type Severity Location

Standard Conformity ProtocolRevenueManager.sol:L33

Description:

The referenced mvariable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of

variables in storage in the overall contract.

Example:

src/ProtocolRevenueManager.sol

SOL

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

The methodology employed for calculating the appropriate for the variable in OpenZeppelin is to
utilize the value of as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. jl in the case of). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the of the gap is directly correlated to the storage layout of the contract

it resides in.

Alleviation:

The [ER array's has been adjusted to a standardized value as advised.

PRM-02C: Optimization of Code Block

Type Severity Location
Gas Optimization ProtocolRevenueManager.sol:L174-L178
Description:

The ProtocolRevenueManager::getAccruedAuctionRevenueRewardsfuncﬁon@codekﬂockisrdaﬂvew

inefficient in its return mechanism.

Example:

src/ProtocolRevenueManager.sol

SOL

function getAccruedAuctionRevenueRewards (

uint256 validatorId

) public view returns (uint256) ({

address etherFiNode = etherFiNodesManager.etherfiNodeAddress (
_validatorId

) ;

uint256 localRevenuelIndex = IEtherFiNode (etherFiNode)
.localRevenuelIndex () ;

uint256 amount = 0;

if (localRevenueIndex > 0) {
amount = globalRevenuelndex - localRevenuelndex;

}

return amount;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ProtocolRevenueManager.sol#L166-L179

Recommendation:

We advise the code to immediately yield a Il 1ocalRevenueIndex 5 a and to yield the
R LD S S T T IS L Y PER TR R PR IeY Calculation in any other case, rendering the local

variable redundant and optimizing the code's legibility.

Alleviation:

The code was partially optimized to the version we advised, rendering this exhibit partially alleviated.

PRM-03C: Repetitive Invocation of Getter Function

Type Severity Location
Gas Optimization ProtocolRevenueManager.sol:L63, L68
Description:

The referenced getter function is invoked twice in the same function context.

Example:

src/ProtocolRevenueManager.sol

SOL

receive () external payable ({

require (

etherFiNodesManager .numberOfValidators () > O,

~ 10

No Active Validator

globalRevenuelIndex +=
msg.value /

etherFiNodesManager.numberOfValidators () ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise it to be invoked once, stored to a local variable, and consequently utilized for the two referenced
instances thus optimizing the code's gas cost.

Alleviation:

The referenced getter function is now invoked only once and stored to a local variable as advised.

PRM-04C: Repetitive Value Literal

Type Severity Location
Code Style ProtocolRevenueManager.sol:L86
Description:

The linked value literal is repeated across the codebase multiple times.

Example:

src/ProtocolRevenueManager.sol

SOL

msg.value) / 100;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

ScoreManager Code Style Findings

SMR-01C: Generic Typographic Mistake

Type Severity Location
Code Style ScoreManager.sol:L40
Description:

The referenced line contains a typographical mistake (i.e. variable without an underscore prefix) or

generic documentational error (i.e. copy-paste) that should be corrected.

Example:

src/ScoreManager.sol

SOL

event NewTypeAdded (uint256 Id, bytes ScoreType) ;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise this to be done so to enhance the legibility of the codebase.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

SMR-02C: Ineffectual Usage of Safe Arithmetics

Type Severity Location
Language Specific ScoreManager.sol:L96
Description:

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.

Example:

src/ScoreManager.sol

SOL

numberOfTypes++;

return numberOfTypes - 1;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#language-specific

Recommendation:

Given that safe arithmetics are toggled on by default in versions of we advise the linked
statement to be wrapped in an code block thereby optimizing its execution cost.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

SMR-03C: Non-Standard Gap Size

Type Severity Location
Standard Conformity ScoreManager.sol:L33
Description:

The referenced mvariable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of

variables in storage in the overall contract.

Example:

src/ScoreManager.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

The methodology employed for calculating the appropriate for the variable in OpenZeppelin is to
utilize the value of as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. @ in the case of [fg)- We advise the size of this variable to be corrected by applying the same
methodology and ensuring the of the gap is directly correlated to the storage layout of the contract

it resides in.

Alleviation:

The [ERY array's has been adjusted to a standardized value as advised.

SMR-04C: Redundant Storage Reads

Type Severity Location
Gas Optimization ScoreManager.sol:L90, L91, L93, L95, L96
Description:

The referenced instructions all read the EEShSEYaelRdwe¥ Variable from the contract's storage instead of

storing it to a local variable for all consequent utilizations.

Example:

src/ScoreManager.sol

SOL

function addNewScoreType (bytes memory type) external onlyOwner returns (uint256) {

scoreTypes [numberOfTypes] = type;

typelds[type] = numberOfTypes;

emit NewTypeAdded (numberOfTypes, type):;

numberOfTypes++;

return numberOfTypes - 1;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the variable to be read once at the beginning of the

SIS VLY EVRRER L NI IR Uy function and stored to a local FteISaeltilyeI gl Variable that is

consequently utilized in all referenced statements, significantly optimizing the gas cost of the function.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/ScoreManager.sol#L89-L97

StakingManager Code Style Findings

SME-01C: Inexistent Error Message

Type Severity Location

Code Style StakingManager.sol:L217

Description:

The linked check has no error message explicitly defined.

Example:

src/StakingManager.sol

SOL

require (bidIdToStaker[validatorId] == address(0), ""

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#code-style

Recommendation:

We advise one to be set so to increase the legibility of the codebase and aid in validating the
check's condition.

Alleviation:

An explicit error message was introduced to the referenced check as advised.

SME-02C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization StakingManager.sol:L120, L181
Description:

The linked loops increment / decrement their iterator "safely” due to Solidity's built - in safe arithmetics

(post (RERED).

Example:

src/StakingManager.sol

SOL

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last
statement within each loop to optimize their execution cost.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

SME-03C: Non-Standard Gap Size

Type Severity Location
Standard Conformity StakingManager.sol:L47
Description:

The referenced mvariable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of

variables in storage in the overall contract.

Example:

src/StakingManager.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

The methodology employed for calculating the appropriate for the variable in OpenZeppelin is to
utilize the value of as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. @ in the case of [fg)- We advise the size of this variable to be corrected by applying the same
methodology and ensuring the of the gap is directly correlated to the storage layout of the contract

it resides in.

Alleviation:

The [ERY array's has been adjusted to a standardized value as advised.

TNFT Code Style Findings

TNF-01C: Non-Standard Gap Size

Type Severity Location

Standard Conformity TNFT.sol:L13

Description:

The referenced mvariable is meant to replicate OpenZeppelin's upgradeability standard by declaring an
offset of variables that can be declared at a later point on the same contract without affecting the order of

variables in storage in the overall contract.

Example:

src¢/TNFT.sol

SOL

uint256[32] gap;

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#standard-conformity

Recommendation:

The methodology employed for calculating the appropriate for the variable in OpenZeppelin is to
utilize the value of as a base and subtract the number of 32-byte slots that are already occupied by the
contract (i.e. jl in the case of). We advise the size of this variable to be corrected by applying the same
methodology and ensuring the of the gap is directly correlated to the storage layout of the contract

it resides in.

Alleviation:

The [ER array's has been adjusted to a standardized value as advised.

Treasury Code Style Findings

TYR-01C: Redundant Evaluation of Balance

Type Severity Location
Gas Optimization Treasury.sol:L16
Description:

The function will fail if the specified exceeds the contract's balance (

address (this) .balance JEHRIgE instruction would fail.

Example:

src/Treasury.sol

SOL

function withdraw(uint256 amount, address external onlyOwner ({
require (
_amount <= address(this) .balance,
"the balance is lower than the requested amount"

) ¢

require(to != address(0), "null address is not allowed");

(bool sent,) = payable(to).call{value: _amount}("");

require (sent, "Failed to send Ether");

https://omniscia.io/reports/etherfi-eth-2.0-staking-6441717d61e3f50014dc41f5/appendix/finding-types#gas-optimization
https://github.com/GadzeFinance/dappContracts/blob/0f9df283aab4eea43f02fb9d99c1dca2e9f60b79/src/Treasury.sol#L14-L22

Recommendation:

We advise the check to be omitted, optimizing the function's execution cost. Alternatively, if
verbose error messages are desirable the check should remain.

Alleviation:

The EtherFi team examined this exhibit and opted not to apply a remediation in the current iteration of the

codebase, instead acknowledging it.

Finding Types

A description of each finding type included in the report can be found below and is linked by each
respective finding. A full list of finding types Omniscia has defined will be viewable at the central audit

methodology we will publish soon.

External Call Validation

Many contracts that interact with DeFi contain a set of complex external call executions that need to happen
in a particular sequence and whose execution is usually taken for granted whereby it is not always the case.
External calls should always be validated, either in the form of checks imposed at the contract-level
or via more intricate mechanisms such as invoking an external getter-variable and ensuring that it has been

properly updated.

Input Sanitization

As there are no inherent guarantees to the inputs a function accepts, a set of guards should always be in

place to sanitize the values passed in to a particular function.

Indeterminate Code

These types of issues arise when a linked code segment may not behave as expected, either due to mistyped

code, convoluted blocks, overlapping functions / variable names and other ambiguous statements.

Language Specific

Language specific issues arise from certain peculiarities that the Solidity language boasts that discerns it
from other conventional programming languages. For example, the EVM is a 256-bit machine meaning that
operations on less-than-256-bit types are more costly for the EVM in terms of gas costs, meaning that loops

utilizing a variable because their limit will never exceed the 8-bit range actually cost more than
redundantly using a variable.

Code Style

An official Solidity style guide exists that is constantly under development and is adjusted on each new
Solidity release, designating how the overall look and feel of a codebase should be. In these types of
findings, we identify whether a project conforms to a particular naming convention and whether that
convention is consistent within the codebase and legible. In case of inconsistencies, we point them out under

this category. Additionally, variable shadowing falls under this category as well which is identified when a

local-level variable contains the same name as a contract-level variable that is present in the inheritance

chain of the local execution level's context.

Gas Optimization

Gas optimization findings relate to ways the codebase can be optimized to reduce the gas cost involved with
interacting with it to various degrees. These types of findings are completely optional and are pointed out

for the benefit of the project's developers.

Standard Conformity

These types of findings relate to incompatibility between a particular standard's implementation and the

project's implementation, oftentimes causing significant issues in the usability of the contracts.

Mathematical Operations

In Solidity, math generally behaves differently than other programming languages due to the constraints of
the EVM. A prime example of this difference is the truncation of values during a division which in turn leads
to loss of precision and can cause systems to behave incorrectly when dealing with percentages and

proportion calculations.

Logical Fault

This category is a bit broad and is meant to cover implementations that contain flaws in the way they are
implemented, either due to unimplemented functionality, unaccounted-for edge cases or similar

extraordinary scenarios.

Centralization Concern

This category covers all findings that relate to a significant degree of centralization present in the project and
as such the potential of a Single-Point-of-Failure (SPoF) for the project that we urge them to re-consider and

potentially omit.

Reentrant Call

This category relates to findings that arise from re-entrant external calls (such as EIP-721 minting operations)
and revolve around the inapplicacy of the Checks-Effects-Interactions (CEl) pattern, a pattern that dictates
checks statements etc.) should occur before effects (local storage updates) and interactions

(external calls) should be performed last.

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary / public / private)

and is in effect for all past, current, and future audit reports that are produced and hosted under Omniscia:

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY
AUDITS/REVIEWS/REPORTS AND ALL PUBLIC/PRIVATE
CONTENT/DELIVERABLES

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and highlight
any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the codebase that

were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This makes them
extremely volatile assets. Any assessment report obtained on such volatile and nascent assets may include

unpredictable results which may lead to positive or negative outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security review does not
constitute endorsement, agreement or acceptance for the Project and technology that was reviewed. Users
relying on this security review should not consider this as having any merit for financial advice or

technological due diligence in any shape, form or nature.

The veracity and accuracy of the findings presented in this report relate solely to the proficiency,
competence, aptitude and discretion of our auditors. Omniscia and its employees make no guarantees, nor
assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation of technologies or any

system / economical / mathematical malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on any

objective, goal or justification without due written assent, acquiescence or approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or investment
advice, nor should it be used to signal that any person reading this report should invest their funds without

sufficient individual due diligence regardless of the findings presented in this report.

Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness, accuracy or
solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack vectors/surface and the high

level of variance associated with utilizing new and consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the

technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the design/creation of this
security review be ever liable to any parties for, or lack thereof, decisions and/or actions with regards to the

information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not
standardized, highly prone to malfunction and extremely speculative by nature. No due diligence and/or
safeguards may be insufficient and users should exercise maximum caution when participating and/or

investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and actionable
recommendations to the Project team (the “client”) with respect to the rectification, amendment and/or
revision of any highlighted issues, vulnerabilities or exploits within the contracts in scope for this

engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform the necessary
checks to ensure that the contracts are functioning as intended, and more specifically to ensure that the
functions contained within the contracts in scope have the desired intended effects, functionalities and

outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any other materials,
products or results of this security review engagement is provided "as is" and "as available" and with all

faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of content,
suggestions, materials or for any loss, delay, damage of any kind which arose as a result of this

engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of any kind
whatsoever that resulted in this engagement and the customer having access to or use of the products,

engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any associated
services or materials, shall not be considered or relied upon as any form of financial, investment, tax, legal,

regulatory, or any other type of advice.

