
Audit Report for ether.fi - October 26, 2023

Summary
Audit Report prepared by Solidified covering ether.fi’s LSD solution.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on October 6, 2023 and the results are presented here.

Audited Files

The source code has been supplied in the following source code repository:

Repo: https://github.com/GadzeFinance/dappContracts
Commit hash: 56c67eff7d313d389ff612c0f0b2c41ae60e9b7a
Additional reviewed commits:

● f9c4927829efe9cbff1122ddd7b04ce3aa9916cf

● 61be7a5805aedad6d4e3f49e4e878472110a9979

● 66cd3ef84248663490eaef4b44e1799445aae641

● c2a042ad4c7de1894c1ac8984bb6c0b4bb16737c

● 3994d2c18d1434adee7d75a124a926dfcff1d096

● a647686213a3b4051bf758059d727ec42d54fb90

src
├── AuctionManager.sol
├── EETH.sol
├── EtherFiAdmin.sol
├── EtherFiNode.sol
├── EtherFiNodesManager.sol
├── EtherFiOracle.sol
├── LiquidityPool.sol
├── MembershipManager.sol
├── MembershipNFT.sol
├── StakingManager.sol
├── WithdrawRequestNFT.sol
└── libraries

└── GlobalIndexLibrary.sol

https://github.com/GadzeFinance/dappContracts

Audit Report for ether.fi - October 26, 2023

(Only the functions processAuctionFeeTransfer and transferAccumulatedRevenue from
AuctionManager.sol were in scope)

Intended Behavior
The code base implements a liquid staking protocol that allows stakers to keep control of their

keys.

Audit Report for ether.fi - October 26, 2023

Findings
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does not necessarily equate to a
higher risk, although certain bugs are more easily detected in unit testing than a security
audit and vice versa.

Criteria Status Comment

Code complexity Medium-High There are a lot of external calls
between the different contracts
that need to be authorized and
that pass important data such
as the original caller as a
function argument.

Code readability and clarity Medium -

Level of Documentation Medium -

Test Coverage Medium-High -

Audit Report for ether.fi - October 26, 2023

Issues Found

Solidified found that the ether.fi contracts contain 3 critical issues, 2 major issues, 15
minor issues, and 5 informational notes.

We recommend issues are amended, while informational notes are up to the team’s
discretion, as they refer to best practices.

Issue # Description Severity Status

1 Anyone can call
StakingManager.batchCancelDepositAsBnftHold
er to cancel a deposit

Critical Resolved

2 A BNFT Holder can cancel a deposit by
bypassing the liquidity pool and receive the
entire stake

Critical Resolved

3 Funds of recycled EtherFiNodes can be stolen Critical Resolved

4 EtherFiOracle will not be able to reach
consensus under some circumstances

Major Resolved

5 The liquidity pool owner can redeem fully
withdrawn, or slashed TNFTs for 30 ether

Major Resolved

6 Dust of eETH could be stuck in the
WithdrawRequestNFT contract

Minor Resolved

7 Reliance on hard-coded gas number for ETH
transfers can be problematic

Minor Resolved

8 LiquidityPool’s TNFT rewards and principal
could be redirected to the treasury

Minor Acknowledged

9 Partial withdrawals can be avoided by malicious
users

Minor Resolved

10 Error in WithdrawRequestNFT.requestWithdraw
validation logic

Minor Resolved

11 EtherFiOracle.numActiveCommitteeMembers Minor Resolved

Audit Report for ether.fi - October 26, 2023

can return wrong values

12 Any MembershipManager admin could rebase
using an arbitrary amount of accrued rewards.

Minor Resolved

13 MembershipManager.addNewTier uses the
wrong length

Minor Resolved

14 MembershipManager functions use
LiquidityPool’s eETH deposit flow

Minor Resolved

15 Misleading SourceOfFunds emitted in events Minor Resolved

16 numPendingDeposits is not updated on
unsuccessful deposits

Minor Resolved

17 Centralization Issues Minor Partially
Resolved

18 Non exit penalty daily rate cannot be updated to
a value greater than 1%

Minor Resolved

19 EtherFiNodesManager does not verify that
staking rewards split sums up to 100%

Minor Resolved

20 Burn fees from
MembershipManager.unwrapForEEthAndBurn
stay in the MembershipManager contract
decreasing rewards for EtherFan holders.

Minor Resolved

21 console.sol is imported in various files Note Acknowledged

22 Hardcoded values Note Resolved

23 LiquidityPool.requestWithdraw checks against
wrong upper limit

Note Resolved

24 Incorrect report finalization check in
EtherFiOracle.verifyReport

Note Resolved

25 Any LiquidityPool admin could increase
ethAmountLockedForWithdrawal

Note Resolved

Audit Report for ether.fi - October 26, 2023

Critical Issues

1. Anyone can call

StakingManager.batchCancelDepositAsBnftHolder to cancel a

deposit

The function StakingManager.batchCancelDepositAsBnftHolder is usually called by the
liquidity pool and passes msg.sender for the _caller argument in this flow. This argument
should be the “address of the bNFT holder who initiated the transaction” and is “used for
verification” according to the docs. However, the function is public with no access control. A
malicious user can call it and pass in the address of the corresponding BNFT holder. This will
cancel the deposit of this user. The function _cancelDeposit then performs the following
operation:
_refundDeposit(msg.sender, 31 ether);

It does not use the address in _caller for the refund, but the address of the user that has
performed the call (i.e., the attacker in this scenario). This leads to a loss of funds for the BNFT
holder.

Recommendation
Add access control to the function and only allow the liquidity pool to call it.

2. A BNFT Holder can cancel a deposit by bypassing the liquidity

pool and receive the entire stake

When making a deposit a BNFT holder calls LiquidityPool.batchDepositAsBnftHolder
and deposits 2 ether which is paired with 30 ether from the liquidity pool to generate the 32

ether needed to spin up a validator node which is then sent to the StakingManager contract.
When canceling a deposit the BNFT holder calls LiquidityPool.batchCancelDeposit and

Audit Report for ether.fi - October 26, 2023

will be refunded either the full 2 ether or 1 ether depending on whether the node has already
been registered or not. However, in this process the LiquidityPool contract will get back its 30
ether from the StakingManager contract.
A BNFT holder can avoid this process by calling StakingManager.batchCancelDeposit and
bypass the LiquidityPool altogether. This will result in the StakingManager contract
refunding the full stake to the BNFT holder directly instead of refunding the LiquidityPool

contract first which then issues the appropriate refund to the BNFT holder. A sample scenario
would be where a malicious BNFT holder deposits 12 ether to spin up 6 nodes and have 180

ether provided by the LiquidityPool contract. Then they could cancel the deposit
immediately afterwards by calling StakingManager.batchCancelDeposit and have the
StakingManager contract refund them their 12 ether plus the 180 ether from the
LiquidityPool.

Recommendation
Remove the batchCancelDeposit function from the StakingManager contract, therefore only
allowing deposit cancellations via the LiquidityPool.

3. Funds of recycled EtherFiNodes can be stolen

When a node is fully withdrawn using EtherFiNodesManager.fullWithdraw the EtherFiNode

is recycled, if the totalBalanceInExecutionLayer is 0. However, this does not reset
etherfiNodeAddress[_validatorId] to address(0), which could still point to the
EtherFiNode. Thus, when the node is reused, an attacker could use the old validator ID to
partially withdraw rewards or fully withdraw the node’s balance upon exit, distributing funds to
the previous BNFT & TNFT holders and node operator, instead of the legitimate owners. The
previous TNFT holder could also send an exit request on the EtherFiNode, using the old
validator ID.
Note that if the total balance in the execution layer upon full withdrawal is 0, the admin will not
be able to prevent this using EtherFiNodesManager.resetWithdrawalSafes (which would set
etherfiNodeAddress[_validatorId] to address(0), since
IEtherFiNode(etherfiNode).resetWithdrawalSafe() sets the phase to
READY_FOR_DEPOSIT and can only be executed once.

Audit Report for ether.fi - October 26, 2023

Recommendation
Set etherfiNodeAddress[_validatorId] = address(0) after pushing the node to
unusedWithdrawalSafes in EtherFiNodesManager.fullWithdraw.

Major Issues

4. EtherFiOracle will not be able to reach consensus under some

circumstances

The function EtherFiOracle.submitReport checks if the condition consenState.support ==

quorumSize is true whenever a report is submitted. However, the value of quorumSize can be
modified by an owner with the function setQuorumSize. This can become very problematic
when the quorum size is reduced and set to a value that is smaller than the current number of
votes.
For instance, assume that consenState.support is 6 and quorumSize is 7. The owner now
reduces the quorumSize to 5. While the quorum was reached, the report will never be
published, because consenState.support == quorumSize will not be true, even if more
submissions come in.

Recommendation
Consider implementing a function that can be called to publish these reports (by checking if
consenState.support <= quorumSize).

Audit Report for ether.fi - October 26, 2023

5. The liquidity pool owner can redeem fully withdrawn, or

slashed TNFTs for 30 ether

The function LiquidityPool.swapTnftForEth allows the owner of the liquidity pool to swap
any TNFT for 30 ether, regardless of its principal value or if it has been fully withdrawn and the
TNFT holder already received back their stake.

Recommendation
Consider removing the functionality, or ensure any swapped TNFTs belong to an operational
validator and are redeemed to the principal value (taking into account any slashing that might
have occurred).

Minor Issues

6. Dust of eETH could be stuck in the WithdrawRequestNFT

contract

When eETH holders request withdrawal using LiquidityPool.requestWithdraw, or EtherFan
holders request withdrawal using LiquidityPool.requestMembershipNFTWithdraw, the
shares corresponding to the ether amount are calculated and sent to the WithdrawRequestNFT

contract. Upon WithdrawRequestNFT.claimWithdraw, the amount is recalculated and the
smaller of the request or the current amount is sent to the user. The share is recalculated in
LiquidityPool.withdraw, rounded up, and burnt from the WithdrawRequestNFT contract.
This could be problematic, because if the value of eETH is altered between the time of request
and claim of withdrawal, excess eETH will be stuck in the WithdrawRequestNFT contract.

Recommendation
Consider burning the originally calculated share of the request in LiquidityPool.withdraw.

Audit Report for ether.fi - October 26, 2023

7. Reliance on hard-coded gas number for ETH transfers can be

problematic

The function EtherFiNode.withdrawFunds has hard-coded gas limits for the ETH transfers to
the different users. While setting a limit in this function can be useful (to prevent DoS attacks by
malicious actors), the hard-coded values can be problematic. For instance, the transfer to the
BNFT holder uses a limit of 2300. This can be too low for smart contracts that emit events or
access state when receiving ETH. As smart contract wallets are getting more popular, the user
may not be able to control the logic of the fallback / receive function and they may not be
aware of the problem.

Recommendation
Reconsider the chosen values and consider making them configurable (for instance, when there
is an update in the future that changes the gas usage).

8. LiquidityPool’s TNFT rewards and principal could be redirected

to the treasury

In scenarios where the totalValueOutOfLp is less than the rewards accrued, withdrawing a
node’s balance that belongs to a TNFT in the liquidity pool might revert due to underflow in
LiquidityPool’s receive function. This could happen if the withdrawal occurs before rebasing
and would effectively redirect the funds to the treasury, disadvantaging eETH and EtherFan

holders. Unless the treasury sends the ether back to the LP, totalValueOutOfLp after rebasing
will be increased by the expected rewards but those will be at the discretion of the treasury -
essentially artificially inflating the value of eETH.

Recommendation
Consider tracking when this occurs and storing the amount in the treasury. Then, anyone should
be allowed to initiate the transfer back to the liquidity pool (after the rebasing), guaranteeing that
the pool will receive these funds in the future.

Audit Report for ether.fi - October 26, 2023

9. Partial withdrawals can be avoided by malicious users

Unlike the EtherFiNode.withdrawFunds function,
EtherFiNodesManager.partialWithdrawBatchGroupByOperator does not set any limits
when sending ether to the different roles. Therefore, a malicious actor could prevent partial
withdrawals by using up all the remaining gas.

Recommendation
Consider using the same logic for sending ether when partial withdrawals are performed.

10. Error in WithdrawRequestNFT.requestWithdraw validation

logic

The function requestWithdraw requires that tokenId <= nextRequestId and returns the
error "Request does not exist" if this is not the case. However, nextRequestId is not minted
yet, so when the token ID is equal to nextRequestId, this check should also fail. The impact of
this off-by-one error is limited because there is an ownerOf check afterwards which will fail for
an unminted token.

Recommendation
Use < instead of <= in the comparison.

11. EtherFiOracle.numActiveCommitteeMembers can return

wrong values

The variable numActiveCommitteeMembers keeps track of the number of active validators in
EtherFiOracle. It is properly decremented when a committee member is disabled using
manageCommitteeMember. However, it is also possible to remove an active committee member

Audit Report for ether.fi - October 26, 2023

with the function removeCommitteeMember. In this case, only numCommitteeMembers is
decremented.

Recommendation
Check if the member is active and decrement numActiveCommitteeMembers if so in
removeCommitteeMember.

12. Any MembershipManager admin could rebase using an

arbitrary amount of accrued rewards.

The function MembershipManager.rebase should only be called from EtherFiAdmin based on
the report from the EtherFiOracle to ensure the integrity of value of eETH. However, any admin
could rebase using an arbitrary amount of accrued rewards.

Recommendation
Consider restricting the access control of rebase to only allow it to be executed from the
EtherFiAdmin contract.

13. MembershipManager.addNewTier uses the wrong length

The function addNewTier in MembershipManager performs a length check against
tierDeposits.length (to impose a maximum length) and returns tierDeposits.length -

1. However, this array is never modified in the function, it modifies tierData instead.

Recommendation
Replace tierDeposits.length with tierData.length.

Audit Report for ether.fi - October 26, 2023

14. MembershipManager functions use LiquidityPool’s eETH

deposit flow

The MembershipManager’s functions wrapEthForEap, and topUpDepositWithEth use
LiquidityPool’s deposit function that takes only _referral as a parameter. The
aforementioned function is intended for eETH staking flow, and the function
LiquidityPool.deposit(_user, _referral) should have been used instead. The incorrect
use results in misleading events as the SourceOfFunds is set to EETH instead of ETHER_FAN,
bypasses the whitelist for the users, and would revert if the MembershipContract address is
not whitelisted (as a user) in the LiquidityPool.

Recommendation
Consider using LiquidityPool.deposit(_user, _referral) function instead, for deposits
relating to ETHER_FAN staking flow.

15. Misleading SourceOfFunds emitted in events

Both the eETH and ETHER_FAN withdrawals are handled by the protocol by the
WithdrawRequestNFT contract, which calls LiquidityPool.withdraw. The withdraw function
attempts to distinguish the SourceOfFunds and emit the information by using msg.sender to
see if it is the MembershipManager or the WithdrawRequestNFT contract. However since all the
withdrawals are handled via WithdrawRequestNFT, SourceOfFunds.EETH is always emitted.

Recommendation
If monitoring the source of funds off-chain is important, consider storing it in the
WithdrawRequestNFT and emitting it according to the request ID.

Audit Report for ether.fi - October 26, 2023

16. numPendingDeposits is not updated on unsuccessful

deposits

LiquidityPool.batchDepositAsBnftHolder increases numPendingDeposits by the
_numberOfValidators, however if not all the validators get deposited successfully, the variable
is not modified to reflect the actual number of successful deposits awaiting registration.

Recommendation
Decrease the number of pending deposits by
_numberOfValidators - newValidators.length if not all deposits are successful.

17. Centralization Issues

Many aspects of the protocol are centralized and are subject to the discretion of the EtherFi
team:

● Admin can set the loyalty and tier points of each MembershipNFT to arbitrary values at
any time.

● MembershipManager.withdrawFees allows any of the contract admins to withdraw its
ether balance to an arbitrary account. This includes significant revenues for stakeholders
like mint / burn / upgrade fees of MembershipNFTs and auction bids fees from
AuctionManager, which can be withdrawn instead of distributed.

● During rebasing, only the boostThreshold amount is sent to the LiquidityPool. This
amount can be set to 0 at any time, essentially trimming out all the extra rewards for
ETHER_FAN holders.

● EtherFiOracle.quorumSize could be set too low, exercising centralized control over
the protocol.

● WithdrawRequests can be invalidated by the EtherFiOracle.
● nonExitPenaltyDailyRate can be set up to 100% per day, up to 1 ether total.
● The owners of the contracts could update the following dependencies:

○ WithdrawRequestNFT can set the LiquidityPool, EETH, and
MembershipManager to any addresses.

○ MembershipNFT can set the LiquidityPool, and MembershipManager to any
addresses.

Audit Report for ether.fi - October 26, 2023

○ LiquidityPool owner can set EETH, EtherFiNodesManager, StakingManager,
TNFT, EtherFiAdmin, and WithdrawRequestNFT to any addresses.

○ StakingManager can set the depositContractEth2 to any address, which
could result in irreversible loss of funds for the users.

Recommendation
Consider enforcing hard lower and upper limits to variables like quorumSize, boostThreshold,
nonExitPenaltyDailyRate, ensure dependencies can only be set once, and remove any
unnecessary points of centralization.

18. Non exit penalty daily rate cannot be updated to a value

greater than 1%

In the pull request 1439, nonExitPenaltyDailyRate was changed from percentages to basis
points. However, the setter function setNonExitPenaltyDailyRate within
EtherFiNodesManager was not updated and still enforces a maximum value of 100, which is
now 1%. Therefore, it will not be possible to update the rate to a value that is greater than 1%.

Recommendation
Update the upper boundary within the setter function to use basis points instead of percentages.

19. EtherFiNodesManager does not verify that staking rewards

split sums up to 100%

While the comment for the function setStakingRewardsSplit states that “Splits must add up
to the SCALE of 1_000_000”, this check was removed in pull request 1445. It is therefore now
possible to set staking rewards split that do not sum up to a value that is smaller or greater than
100%. Both would be problematic, as it would either lead to a loss of funds (for a value that is
too small) or failing withdrawals (for a value that is too great).

Recommendation

Audit Report for ether.fi - October 26, 2023

Enforce that the splits sum up to 1,000,000 to avoid mistakes by the administrator.

20. Burn fees from MembershipManager.unwrapForEEthAndBurn

stay in the MembershipManager contract decreasing rewards for

EtherFan holders.

The function unwrapForEETHAndBurn, burns an EtherFan NFT for the corresponding amount of
eETH. If the burn fee waiver period has not been met, the MembershipManager transfers the
share of eETH to the user, subtracting the fee, while the fee is left as an excess in the
MembershipManager. While this does not negatively affect the value of eETH as the total shares
remain the same, the surplus of eETH in the contract accumulates rewards. During rebase, ETH
in the MembershipManager, accrued from fees, is deposited to the liquidity pool, and the minted
eETH shares are divided amongst the total supply to be split amongst the vaults. The surplus of
eETH in the contract would slightly decrease the amount distributed to each vault, and
subsequently, NFT holders’ boosted rewards.

Recommendation
Remove the burn fee for wrapping to eETH, alternatively, burn the excess eETH to boost its
value, or send it to the treasury.

Informational Notes

21. console.sol is imported in various files

Various files (MembershipNFT.sol, MembershipManager.sol, EtherFiAdmin.sol,
EtherFiOracle.sol, LiquidityPool.sol, GlobalIndexLibrary.sol) import
forge-std/console.sol.

Audit Report for ether.fi - October 26, 2023

Recommendation
Remove these imports before the deployment.

22. Hardcoded values

The function EtherFiNodeManager.fullWithdraw uses a hardcoded value for the max
number of withdrawals to be claimed if staking is enabled, instead of the
maxEigenlayerWithrawals variable that exists for this purpose and can be modified by the
owner.
Also, the function EtherFiNode.setReportStartSlot uses a hardcoded value for the slots per
epoch, instead of the constant SLOTS_PER_EPOCH that denotes the number of slots in one epoch
(32).

Recommendation
Consider using the corresponding variables and constants in those functions, to avoid issues
when the values are changed in the future.

23. LiquidityPool.requestWithdraw checks against wrong upper

limit

LiquidityPool.requestWithdraw performs the following check:
if (amount > type(uint128).max || amount == 0 || share == 0) revert

InvalidAmount();

However, the variable amount is afterwards cast to a uint96, not a uint128. This would only
lead to problems if the user has an eETH balance that is larger than type(uint96).max, which
is highly improbable. Nevertheless, it is recommended to use the correct upper limits for the
input sanitization.

Recommendation
Revert when the amount is larger than type(uint96).max.

Audit Report for ether.fi - October 26, 2023

24. Incorrect report finalization check in

EtherFiOracle.verifyReport

The comment in line 130 of EtherFiOracle.sol specifies that a report is considered finalized
at current_epoch - 2. However, the check in line 134 is require(reportEpoch + 2 <

currentEpoch). This means that a report is finalized while it is less than current_epoch - 2

and not finalized when it equals current_epoch - 2 which contradicts the comment. The
same issue exists in line 145 in the _isFinalized function.

Recommendation
Either update the check to require(reportEpoch + 2 <= currentEpoch) or clarify the
comment.

25. Any LiquidityPool admin could increase

ethAmountLockedForWithdrawal

The function LiquidityPool.addEthAmountLockedForWithdrawal should only be called from
EtherFiAdmin based on the report from the EtherFiOracle. However, any admin could call
the function inflating the amount of ETH locked for withdrawals.

Recommendation

Consider restricting the access control of addEthAmountLockedForWithdrawl to only allow it to
be executed from the EtherFiAdmin contract.

Audit Report for ether.fi - October 26, 2023

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Gadze Finance SEZC or its products. This audit does not provide a security or

correctness guarantee of the audited smart contract. Securing smart contracts is a

multistep process, therefore running a bug bounty program as a complement to this

audit is strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Oak Security GmbH

